
Sign up to save your podcasts
Or


This paper presents a new watermarking technique for LLM-generated text, embedding signals in model weights, ensuring efficiency, reliability, and robustness without compromising text quality or generation latency.
https://arxiv.org/abs//2501.13941
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper presents a new watermarking technique for LLM-generated text, embedding signals in model weights, ensuring efficiency, reliability, and robustness without compromising text quality or generation latency.
https://arxiv.org/abs//2501.13941
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

962 Listeners

1,932 Listeners

431 Listeners

112,238 Listeners

9,927 Listeners

5,511 Listeners

214 Listeners

49 Listeners

93 Listeners

466 Listeners