The Gradient: Perspectives on AI

Harvey Lederman: Propositional Attitudes and Reference in Language Models


Listen Later

In episode 106 of The Gradient Podcast, Daniel Bashir speaks to Professor Harvey Lederman.

Professor Lederman is a professor of philosophy at UT Austin. He has broad interests in contemporary philosophy and in the history of philosophy: his areas of specialty include philosophical logic, the Ming dynasty philosopher Wang Yangming, epistemology, and philosophy of language. He has recently been working on incomplete preferences, on trying in the philosophy of language, and on Wang Yangming’s moral metaphysics.

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach us at [email protected]

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (02:15) Harvey’s background

* (05:30) Higher-order metaphysics and propositional attitudes

* (06:25) Motivations

* (12:25) Setup: syntactic types and ontological categories

* (25:11) What makes higher-order languages meaningful and not vague?

* (25:57) Higher-order languages corresponding to the world

* (30:52) Extreme vagueness

* (35:32) Desirable features of languages and important questions in philosophy

* (36:42) Higher-order identity

* (40:32) Intuitions about mental content, language, context-sensitivity

* (50:42) Perspectivism

* (51:32) Co-referring names, identity statements

* (55:42) The paper’s approach, “know” as context-sensitive

* (57:24) Propositional attitude psychology and mentalese generalizations

* (59:57) The “good standing” of theorizing about propositional attitudes

* (1:02:22) Mentalese

* (1:03:32) “Does knowledge imply belief?” — when a question does not have good standing

* (1:06:17) Sense, Reference, and Substitution

* (1:07:07) Fregeans and the principle of Substitution

* (1:12:12) Follow-up work to this paper

* (1:13:39) Do Language Models Produce Reference Like Libraries or Like Librarians?

* (1:15:02) Bibliotechnism

* (1:19:08) Inscriptions and reference, what it takes for something to refer

* (1:22:37) Derivative and basic reference

* (1:24:47) Intuition: n-gram models and reference

* (1:28:22) Meaningfulness in sentences produced by n-gram models

* (1:30:40) Bibliotechnism and LLMs, disanalogies to n-grams

* (1:33:17) On other recent work (vector grounding, do LMs refer?, etc.)

* (1:40:12) Causal connections and reference, how bibliotechnism makes good on the meanings of sentences

* (1:45:46) RLHF, sensitivity to truth and meaningfulness

* (1:48:47) Intelligibility

* (1:50:52) When LLMs produce novel reference

* (1:53:37) Novel reference vs. find-replace

* (1:56:00) Directionality example

* (1:58:22) Human intentions and derivative reference

* (2:00:47) Between bibliotechnism and agency

* (2:05:32) Where do invented names / novel reference come from?

* (2:07:17) Further questions

* (2:10:04) Outro

Links:

* Harvey’s homepage and Twitter

* Papers discussed

* Higher-order metaphysics and propositional attitudes

* Perspectivism

* Sense, Reference, and Substitution

* Are Language Models More Like Libraries or Like Librarians? Bibliotechnism, the Novel Reference Problem, and the Attitudes of LLMs



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Gray Area with Sean Illing by Vox

The Gray Area with Sean Illing

10,685 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

Thoughts on the Market by Morgan Stanley

Thoughts on the Market

1,261 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

195 Listeners

Last Week in AI by Skynet Today

Last Week in AI

288 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,050 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

386 Listeners

Hard Fork by The New York Times

Hard Fork

5,422 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

146 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,228 Listeners

Unexplainable by Vox

Unexplainable

2,188 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The Ben & Marc Show by Marc Andreessen, Ben Horowitz

The Ben & Marc Show

134 Listeners