Modellansatz

InfSup-Bedingung


Listen Later

Am 6. Juni 2018 hat Dietmar Gallistl seine Antrittsvorlesung gehalten. Dies ist der traditionelle Abschluss jedes Habilitationsverfahrens an der KIT-Fakultät für Mathematik. Der Titel des Vortrags lautete: Die Stabilitätskonstante des Divergenzoperators und ihre numerische Bestimmung.

Im Zentrum des Vortrags und des Gespräches mit Gudrun stand die Inf-sup-Bedingung, die u.a. in der Strömungsrechnung eine zentrale Rolle spielt. Das lineare Strömungsproblem (Stokesproblem) besteht aus einer elliptischen Vektor-Differentialgleichung für das Geschwindigkeitsfeld und den Gradienten des Drucks und einer zweiten Gleichung. Diese entsteht unter der Annahme, dass es zu keiner Volumenänderung im Fluid unter Druck kommt (sogenannte Inkompressibilität) aus der Masseerhaltung. Mathematisch ist es die Bedingung, dass die Divergenz des Geschwindigkeitsfeldes Null ist. Physikalisch ist es eine Nebenbedingung. In der Behandlung des Problems sowohl in der Analysis als auch in der Numerik wird häufig ein Lösungsraum gewählt, in dem diese Bedingung automatisch erfüllt ist. Damit verschwindet der Term mit dem Druck aus der Gleichung. Für das Geschwindigkeitsfeld ist dann mit Hilfe des Lax-Milgram Satzes eine eindeutige Lösung garantiert. Allerdings nicht für den Druck.

Genau genommen entsteht nämlich ein Sattelpunktproblem sobald man den Druck nicht ausblendet. Dieses ist nicht wohlgestellt, weil man keine natürlichen Schranken hat. Unter einer zusätzlichen Bedingung ist es aber möglich, hier auch die Existenz des Druckes zu sichern (und zwar sowohl analytisch als auch später im numerischen Verfahren solange der endliche Raum ein Unterraum des analytischen Raumes ist). Diese heißt entweder inf-sup Bedingung oder aber nach den vielen Müttern und Vätern: Ladyzhenska-Babushka-Brezzi-Bedingung.

Die Konstante in der Bedingung geht direkt in verschiedene Abschätzungen ein und es wäre deshalb schön, sie genau zu kennen. Ein Hilfsmittel bei der geschickten numerischen Approximation ist die Helmholtzzerlegung des L2. Diese besagt, dass sich jedes Feld eindeutig in zwei Teile zerlegen läßt, von der eines ein Gradient ist und der andere schwach divergenzfrei. Es lassen sich dann beide Teile getrennt betrachten. Man konstruiert den gemischten Finite Elemente Raum so, dass im Druck stückweise polynomielle Funktionen (mit Mittelwert 0) auftreten und und für den Raum der Geschwindigkeitsgradienten das orthogonale kompelemt der schwach divergenzfreien Raviart-Thomas-Elemente gewählt ist.

Dietmar Gallistl hat in Freiburg und Berlin Mathematik studiert und promovierte 2014 an der Humboldt-Universität zu Berlin. Nach Karlsruhe kam er als Nachwuchsgruppenleiter im SFB Wellenphänome - nahm aber schon kurz darauf in Heidelberg die Vertretung einer Professur wahr. Zur Zeit ist er als Assistant Professor an der Universität Twente tätig.


Literatur und weiterführende Informationen
  • D. Gallistl. Rayleigh-Ritz approximation of the inf-sup constant for the divergence. Math. Comp. (2018) Published online, https://doi.org/10.1090/mcom/3327
  • Ch. Bernardi, M. Costabel, M. Dauge, and V. Girault, Continuity properties of the inf-sup constant for the divergence, SIAM J. Math. Anal. 48 (2016), no. 2, 1250–1271. https://doi.org/10.1137/15M1044989
  • M. Costabel and M. Dauge, On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 873–898. https://doi.org/10.1007/s00205-015-0845-2
  • D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013.

Podcasts
  • J. Babutzka: Helmholtzzerlegung, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 85, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016.
  • M. Steinhauer: Reguläre Strömungen, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 113, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2016
...more
View all episodesView all episodes
Download on the App Store

ModellansatzBy Gudrun Thäter, Sebastian Ritterbusch


More shows like Modellansatz

View all
Bits und so by Undsoversum GmbH

Bits und so

23 Listeners

IQ - Wissenschaft und Forschung by Bayerischer Rundfunk

IQ - Wissenschaft und Forschung

46 Listeners

Welt der Physik | Podcast by Welt der Physik

Welt der Physik | Podcast

13 Listeners

WRINT: Wer redet ist nicht tot by Holger Klein

WRINT: Wer redet ist nicht tot

16 Listeners

AstroGeo - Geschichten aus Astronomie und Geologie by Karl Urban und Franziska Konitzer

AstroGeo - Geschichten aus Astronomie und Geologie

7 Listeners

Sternengeschichten by Florian Freistetter

Sternengeschichten

44 Listeners

Geschichten aus der Geschichte by Richard Hemmer und Daniel Meßner

Geschichten aus der Geschichte

189 Listeners

Eine Stunde History - Deutschlandfunk Nova by Deutschlandfunk Nova

Eine Stunde History - Deutschlandfunk Nova

109 Listeners

Hotel Matze by Matze Hielscher & Mit Vergnügen

Hotel Matze

152 Listeners

UKW by Metaebene Personal Media - Tim Pritlove

UKW

1 Listeners

Spektrum-Podcast by detektor.fm – Das Podcast-Radio

Spektrum-Podcast

16 Listeners

Science Busters Podcast by Martin Puntigam, Martin Moder, Florian Freistetter

Science Busters Podcast

4 Listeners

LANZ & PRECHT by ZDF, Markus Lanz & Richard David Precht

LANZ & PRECHT

307 Listeners

Der KI-Podcast by ARD

Der KI-Podcast

13 Listeners

Geschichten aus der Mathematik by detektor.fm – Das Podcast-Radio

Geschichten aus der Mathematik

1 Listeners