The Gradient: Perspectives on AI

Jacob Andreas: Language, Grounding, and World Models


Listen Later

Episode 140

I spoke with Professor Jacob Andreas about:

* Language and the world

* World models

* How he’s developed as a scientist

Enjoy!

Jacob is an associate professor at MIT in the Department of Electrical Engineering and Computer Science as well as the Computer Science and Artificial Intelligence Laboratory. His research aims to understand the computational foundations of language learning, and to build intelligent systems that can learn from human guidance. Jacob earned his Ph.D. from UC Berkeley, his M.Phil. from Cambridge (where he studied as a Churchill scholar) and his B.S. from Columbia. He has received a Sloan fellowship, an NSF CAREER award, MIT's Junior Bose and Kolokotrones teaching awards, and paper awards at ACL, ICML and NAACL.

Find me on Twitter for updates on new episodes, and reach me at [email protected] for feedback, ideas, guest suggestions.

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (00:40) Jacob’s relationship with grounding fundamentalism

* (05:21) Jacob’s reaction to LLMs

* (11:24) Grounding language — is there a philosophical problem?

* (15:54) Grounding and language modeling

* (24:00) Analogies between humans and LMs

* (30:46) Grounding language with points and paths in continuous spaces

* (32:00) Neo-Davidsonian formal semantics

* (36:27) Evolving assumptions about structure prediction

* (40:14) Segmentation and event structure

* (42:33) How much do word embeddings encode about syntax?

* (43:10) Jacob’s process for studying scientific questions

* (45:38) Experiments and hypotheses

* (53:01) Calibrating assumptions as a researcher

* (54:08) Flexibility in research

* (56:09) Measuring Compositionality in Representation Learning

* (56:50) Developing an independent research agenda and developing a lab culture

* (1:03:25) Language Models as Agent Models

* (1:04:30) Background

* (1:08:33) Toy experiments and interpretability research

* (1:13:30) Developing effective toy experiments

* (1:15:25) Language Models, World Models, and Human Model-Building

* (1:15:56) OthelloGPT’s bag of heuristics and multiple “world models”

* (1:21:32) What is a world model?

* (1:23:45) The Big Question — from meaning to world models

* (1:28:21) From “meaning” to precise questions about LMs

* (1:32:01) Mechanistic interpretability and reading tea leaves

* (1:35:38) Language and the world

* (1:38:07) Towards better language models

* (1:43:45) Model editing

* (1:45:50) On academia’s role in NLP research

* (1:49:13) On good science

* (1:52:36) Outro

Links:

* Jacob’s homepage and Twitter

* Language Models, World Models, and Human Model-Building

* Papers

* Semantic Parsing as Machine Translation (2013)

* Grounding language with points and paths in continuous spaces (2014)

* How much do word embeddings encode about syntax? (2014)

* Translating neuralese (2017)

* Analogs of linguistic structure in deep representations (2017)

* Learning with latent language (2018)

* Learning from Language (2018)

* Measuring Compositionality in Representation Learning (2019)

* Experience grounds language (2020)

* Language Models as Agent Models (2022)



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Gray Area with Sean Illing by Vox

The Gray Area with Sean Illing

10,685 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

Thoughts on the Market by Morgan Stanley

Thoughts on the Market

1,261 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

195 Listeners

Last Week in AI by Skynet Today

Last Week in AI

288 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,050 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

386 Listeners

Hard Fork by The New York Times

Hard Fork

5,422 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

146 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,220 Listeners

Unexplainable by Vox

Unexplainable

2,182 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The Ben & Marc Show by Marc Andreessen, Ben Horowitz

The Ben & Marc Show

134 Listeners