The Gradient: Perspectives on AI

Joel Lehman: Open-Endedness and Evolution through Large Models


Listen Later

Have suggestions for future podcast guests (or other feedback)? Let us know here!

In episode 42 of The Gradient Podcast, Daniel Bashir speaks to Joel Lehman.

Joel is a machine learning scientist interested in AI safety, reinforcement learning, and creative open-ended search algorithms. Joel has spent time at Uber AI Labs and OpenAI and is the co-author of the book Why Greatness Cannot be Planned: The Myth of the Objective

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (01:40) From game development to AI

* (03:20) Why evolutionary algorithms

* (10:00) Abandoning Objectives: Evolution Through the Search for Novelty Alone

* (24:10) Measuring a desired behavior post-hoc vs optimizing for that behavior

* (27:30) Neuroevolution through Augmenting Topologies (NEAT), Evolving a Diversity of Virtual Creatures

* (35:00) Humans are an inefficient solution to evolution’s objectives

* (47:30) Is embodiment required for understanding? Today’s LLMs as practical thought experiments in disembodied understanding

* (51:15) Evolution through Large Models (ELM)

* (1:01:07) ELM: Quality Diversity Algorithms, MAP-Elites, bootstrapping training data

* (1:05:25) Dimensions of Diversity in MAP-Elites, what is “interesting”?

* (1:12:30) ELM: Fine-tuning the language model

* (1:18:00) Results of invention in ELM, complexity in creatures

* (1:20:20) Future work building on ELM, key challenges in open-endedness

* (1:24:30) How Joel’s research affects his approach to life and work

* (1:28:30) Balancing novelty and exploitation in work

* (1:34:10) Intense competition in AI, Joel’s advice for people considering ML research

* (1:38:45) Daniel isn’t the worst interviewer ever

* (1:38:50) Outro

Links:

* Joel’s webpage

* Evolution through Large Models: The Tweet

* Papers:

* Abandoning Objectives: Evolution through the search for novelty alone

* Evolving a diversity of virtual creatures through novelty search and local competition

* Designing neural networks through neuroevolution

* Evolution through Large Models

* Resources for (aspiring) ML researchers!

* Cohere for AI

* ML Collective



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Gray Area with Sean Illing by Vox

The Gray Area with Sean Illing

10,688 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

Thoughts on the Market by Morgan Stanley

Thoughts on the Market

1,260 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

196 Listeners

Last Week in AI by Skynet Today

Last Week in AI

287 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,048 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

87 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

387 Listeners

Hard Fork by The New York Times

Hard Fork

5,420 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

146 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,207 Listeners

Unexplainable by Vox

Unexplainable

2,187 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

75 Listeners

The Ben & Marc Show by Marc Andreessen, Ben Horowitz

The Ben & Marc Show

134 Listeners