The Gradient: Perspectives on AI

Kyunghyun Cho: Neural Machine Translation, Language, and Doing Good Science


Listen Later

In episode 59 of The Gradient Podcast, Daniel Bashir speaks to Professor Kyunghyun Cho.

Professor Cho is an associate professor of computer science and data science at New York University and CIFAR Fellow of Learning in Machines & Brains. He is also a senior director of frontier research at the Prescient Design team within Genentech Research & Early Development. He was a research scientist at Facebook AI Research from 2017-2020 and a postdoctoral fellow at University of Montreal under the supervision of Prof. Yoshua Bengio after receiving his MSc and PhD degrees from Aalto University. He received the Samsung Ho-Am Prize in Engineering in 2021.

Have suggestions for future podcast guests (or other feedback)? Let us know here!

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (02:15) How Professor Cho got into AI, going to Finland for a PhD

* (06:30) Accidental and non-accidental parts of Prof Cho’s journey, the role of timing in career trajectories

* (09:30) Prof Cho’s M.Sc. thesis on Restricted Boltzmann Machines

* (17:00) The state of autodiff at the time

* (20:00) Finding non-mainstream problems and examining limitations of mainstream approaches, anti-dogmatism, Yoshua Bengio appreciation

* (24:30) Detaching identity from work, scientific training

* (26:30) The rest of Prof Cho’s PhD, the first ICLR conference, working in Yoshua Bengio’s lab

* (34:00) Prof Cho’s isolation during his PhD and its impact on his work—transcending insecurity and working on unsexy problems

* (41:30) The importance of identifying important problems and developing an independent research program, ceiling on the number of important research problems

* (46:00) Working on Neural Machine Translation, Jointly Learning to Align and Translate

* (1:01:45) What RNNs and earlier NN architectures can still teach us, why transformers were successful

* (1:08:00) Science progresses gradually

* (1:09:00) Learning distributed representations of sentences, extending the distributional hypothesis

* (1:21:00) Difficulty and limitations in evaluation—directions of dynamic benchmarks, trainable evaluation metrics

* (1:29:30) Mixout and AdapterFusion: fine-tuning and intervening on pre-trained models, pre-training as initialization, destructive interference

* (1:39:00) Analyzing neural networks as reading tea leaves

* (1:44:45) Importance of healthy skepticism for scientists

* (1:45:30) Language-guided policies and grounding, vision-language navigation

* (1:55:30) Prof Cho’s reflections on 2022

* (2:00:00) Obligatory ChatGPT content

* (2:04:50) Finding balance

* (2:07:15) Outro

Links:

* Professor Cho’s homepage and Twitter

* Papers

* M.Sc. thesis and PhD thesis

* NMT and attention

* Properties of NMT,

* Learning Phrase Representations

* Neural machine translation by jointly learning to align and translate

* More recent work

* Learning Distributed Representations of Sentences from Unlabelled Data

* Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models

* Generative Language-Grounded Policy in Vision-and-Language Navigation with Bayes’ Rule

* AdapterFusion: Non-Destructive Task Composition for Transfer Learning



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Joe Rogan Experience by Joe Rogan

The Joe Rogan Experience

229,169 Listeners

The a16z Show by Andreessen Horowitz

The a16z Show

1,089 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

334 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll | Wondery

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,182 Listeners

Practical AI by Practical AI LLC

Practical AI

211 Listeners

The Journal. by The Wall Street Journal & Spotify Studios

The Journal.

6,095 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,927 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

511 Listeners

Hard Fork by The New York Times

Hard Fork

5,512 Listeners

The Rest Is History by Goalhanger

The Rest Is History

15,272 Listeners

Huberman Lab by Scicomm Media

Huberman Lab

29,246 Listeners

Disintegrator by Roberto Alonso Trillo, Marek Poliks, and Helena McFadzean

Disintegrator

10 Listeners

Practical: AI & Business News by Practical News

Practical: AI & Business News

25 Listeners