The Gradient: Perspectives on AI

Kyunghyun Cho: Neural Machine Translation, Language, and Doing Good Science


Listen Later

In episode 59 of The Gradient Podcast, Daniel Bashir speaks to Professor Kyunghyun Cho.

Professor Cho is an associate professor of computer science and data science at New York University and CIFAR Fellow of Learning in Machines & Brains. He is also a senior director of frontier research at the Prescient Design team within Genentech Research & Early Development. He was a research scientist at Facebook AI Research from 2017-2020 and a postdoctoral fellow at University of Montreal under the supervision of Prof. Yoshua Bengio after receiving his MSc and PhD degrees from Aalto University. He received the Samsung Ho-Am Prize in Engineering in 2021.

Have suggestions for future podcast guests (or other feedback)? Let us know here!

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (02:15) How Professor Cho got into AI, going to Finland for a PhD

* (06:30) Accidental and non-accidental parts of Prof Cho’s journey, the role of timing in career trajectories

* (09:30) Prof Cho’s M.Sc. thesis on Restricted Boltzmann Machines

* (17:00) The state of autodiff at the time

* (20:00) Finding non-mainstream problems and examining limitations of mainstream approaches, anti-dogmatism, Yoshua Bengio appreciation

* (24:30) Detaching identity from work, scientific training

* (26:30) The rest of Prof Cho’s PhD, the first ICLR conference, working in Yoshua Bengio’s lab

* (34:00) Prof Cho’s isolation during his PhD and its impact on his work—transcending insecurity and working on unsexy problems

* (41:30) The importance of identifying important problems and developing an independent research program, ceiling on the number of important research problems

* (46:00) Working on Neural Machine Translation, Jointly Learning to Align and Translate

* (1:01:45) What RNNs and earlier NN architectures can still teach us, why transformers were successful

* (1:08:00) Science progresses gradually

* (1:09:00) Learning distributed representations of sentences, extending the distributional hypothesis

* (1:21:00) Difficulty and limitations in evaluation—directions of dynamic benchmarks, trainable evaluation metrics

* (1:29:30) Mixout and AdapterFusion: fine-tuning and intervening on pre-trained models, pre-training as initialization, destructive interference

* (1:39:00) Analyzing neural networks as reading tea leaves

* (1:44:45) Importance of healthy skepticism for scientists

* (1:45:30) Language-guided policies and grounding, vision-language navigation

* (1:55:30) Prof Cho’s reflections on 2022

* (2:00:00) Obligatory ChatGPT content

* (2:04:50) Finding balance

* (2:07:15) Outro

Links:

* Professor Cho’s homepage and Twitter

* Papers

* M.Sc. thesis and PhD thesis

* NMT and attention

* Properties of NMT,

* Learning Phrase Representations

* Neural machine translation by jointly learning to align and translate

* More recent work

* Learning Distributed Representations of Sentences from Unlabelled Data

* Mixout: Effective Regularization to Finetune Large-scale Pretrained Language Models

* Generative Language-Grounded Policy in Vision-and-Language Navigation with Bayes’ Rule

* AdapterFusion: Non-Destructive Task Composition for Transfer Learning



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Gray Area with Sean Illing by Vox

The Gray Area with Sean Illing

10,685 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

Thoughts on the Market by Morgan Stanley

Thoughts on the Market

1,261 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

195 Listeners

Last Week in AI by Skynet Today

Last Week in AI

288 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,050 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

386 Listeners

Hard Fork by The New York Times

Hard Fork

5,422 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

146 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,228 Listeners

Unexplainable by Vox

Unexplainable

2,188 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The Ben & Marc Show by Marc Andreessen, Ben Horowitz

The Ben & Marc Show

134 Listeners