
Sign up to save your podcasts
Or


This paper proposes a framework to train dense retrievers that can identify high-quality in-context examples for large language models (LLMs), improving their learning performance. Experimental results show significant enhancements in performance and generalization ability to unseen tasks.
https://arxiv.org/abs//2307.07164
YouTube: https://www.youtube.com/@ArxivPapers
PODCASTS:
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper proposes a framework to train dense retrievers that can identify high-quality in-context examples for large language models (LLMs), improving their learning performance. Experimental results show significant enhancements in performance and generalization ability to unseen tasks.
https://arxiv.org/abs//2307.07164
YouTube: https://www.youtube.com/@ArxivPapers
PODCASTS:
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

958 Listeners

1,977 Listeners

438 Listeners

112,858 Listeners

10,073 Listeners

5,535 Listeners

214 Listeners

51 Listeners

98 Listeners

473 Listeners