
Sign up to save your podcasts
Or


The paper presents a method to accelerate "grokking" in neural networks by using learned embeddings from a weaker model, enabling direct generalization without delay across various tasks.
https://arxiv.org/abs//2504.13292
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper presents a method to accelerate "grokking" in neural networks by using learned embeddings from a weaker model, enabling direct generalization without delay across various tasks.
https://arxiv.org/abs//2504.13292
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,923 Listeners

432 Listeners

112,277 Listeners

9,920 Listeners

5,509 Listeners

217 Listeners

49 Listeners

93 Listeners

466 Listeners