
Sign up to save your podcasts
Or


This paper explores optimal inference-time computation for large language models, revealing scenarios where sequential scaling significantly outperforms parallel scaling, particularly in graph connectivity problems.
https://arxiv.org/abs//2505.21825
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper explores optimal inference-time computation for large language models, revealing scenarios where sequential scaling significantly outperforms parallel scaling, particularly in graph connectivity problems.
https://arxiv.org/abs//2505.21825
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

963 Listeners

1,933 Listeners

434 Listeners

112,360 Listeners

9,922 Listeners

5,507 Listeners

217 Listeners

49 Listeners

93 Listeners

467 Listeners