Data Engineering Podcast

Making Spark Cloud Native At Data Mechanics


Listen Later

Summary

Spark is one of the most well-known frameworks for data processing, whether for batch or streaming, ETL or ML, and at any scale. Because of its popularity it has been deployed on every kind of platform you can think of. In this episode Jean-Yves Stephan shares the work that he is doing at Data Mechanics to make it sing on Kubernetes. He explains how operating in a cloud-native context simplifies some aspects of running the system while complicating others, how it simplifies the development and experimentation cycle, and how you can get a head start using their pre-built Spark container. This is a great conversation for understanding how new ways of operating systems can have broader impacts on how they are being used.

Announcements
  • Hello and welcome to the Data Engineering Podcast, the show about modern data management
  • When you’re ready to build your next pipeline, or want to test out the projects you hear about on the show, you’ll need somewhere to deploy it, so check out our friends at Linode. With their managed Kubernetes platform it’s now even easier to deploy and scale your workflows, or try out the latest Helm charts from tools like Pulsar and Pachyderm. With simple pricing, fast networking, object storage, and worldwide data centers, you’ve got everything you need to run a bulletproof data platform. Go to dataengineeringpodcast.com/linode today and get a $100 credit to try out a Kubernetes cluster of your own. And don’t forget to thank them for their continued support of this show!
  • Firebolt is the fastest cloud data warehouse. Visit dataengineeringpodcast.com/firebolt to get started. The first 25 visitors will receive a Firebolt t-shirt.
  • Atlan is a collaborative workspace for data-driven teams, like Github for engineering or Figma for design teams. By acting as a virtual hub for data assets ranging from tables and dashboards to SQL snippets & code, Atlan enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Snowflake, Slack, Looker and more. Go to dataengineeringpodcast.com/atlan today and sign up for a free trial. If you’re a data engineering podcast listener, you get credits worth $3000 on an annual subscription
  • Your host is Tobias Macey and today I’m interviewing Jean-Yves Stephan about Data Mechanics, a cloud-native Spark platform for data engineers
  • Interview
    • Introduction
    • How did you get involved in the area of data management?
    • Can you start by giving an overview of what you are building at Data Mechanics and the story behind it?
    • What are the operational characteristics of Spark that make it difficult to run in a cloud-optimized environment?
    • How do you handle retries, state redistribution, etc. when instances get pre-empted during the middle of a job execution?
      • What are some of the tactics that you have found useful when designing jobs to make them more resilient to interruptions?
      • What are the customizations that you have had to make to Spark itself?
      • What are some of the supporting tools that you have built to allow for running Spark in a Kubernetes environment?
      • How is the Data Mechanics platform implemented?
        • How have the goals and design of the platform changed or evolved since you first began working on it?
        • How does running Spark in a container/Kubernetes environment change the ways that you and your customers think about how and where to use it?
          • How does it impact the development workflow for data engineers and data scientists?
          • What are some of the most interesting, unexpected, or challenging lessons that you have learned while building the Data Mechanics product?
          • When is Spark/Data Mechanics the wrong choice?
          • What do you have planned for the future of the platform?
          • Contact Info
            • LinkedIn
            • Parting Question
              • From your perspective, what is the biggest gap in the tooling or technology for data management today?
              • Links
                • Data Mechanics
                • Databricks
                • Stanford
                • Andrew Ng
                • Mining Massive Datasets
                • Spark
                • Kubernetes
                • Spot Instances
                • Infiniband
                • Data Mechanics Spark Container Image
                • Delight – Spark monitoring utility
                • Terraform
                • Blue/Green Deployment
                • Spark Operator for Kubernetes
                • JupyterHub
                • Jupyter Enterprise Gateway
                • The intro and outro music is from The Hug by The Freak Fandango Orchestra / CC BY-SA

                  Support Data Engineering Podcast

                  ...more
                  View all episodesView all episodes
                  Download on the App Store

                  Data Engineering PodcastBy Tobias Macey

                  • 4.5
                  • 4.5
                  • 4.5
                  • 4.5
                  • 4.5

                  4.5

                  140 ratings


                  More shows like Data Engineering Podcast

                  View all
                  Software Engineering Radio by se-radio@computer.org

                  Software Engineering Radio

                  273 Listeners

                  The Changelog: Software Development, Open Source by Changelog Media

                  The Changelog: Software Development, Open Source

                  292 Listeners

                  Software Engineering Daily by Software Engineering Daily

                  Software Engineering Daily

                  624 Listeners

                  The Cloudcast by Massive Studios

                  The Cloudcast

                  153 Listeners

                  Talk Python To Me by Michael Kennedy

                  Talk Python To Me

                  585 Listeners

                  Thoughtworks Technology Podcast by Thoughtworks

                  Thoughtworks Technology Podcast

                  42 Listeners

                  Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

                  Super Data Science: ML & AI Podcast with Jon Krohn

                  303 Listeners

                  Python Bytes by Michael Kennedy and Brian Okken

                  Python Bytes

                  214 Listeners

                  Syntax - Tasty Web Development Treats by Wes Bos & Scott Tolinski - Full Stack JavaScript Web Developers

                  Syntax - Tasty Web Development Treats

                  983 Listeners

                  DataFramed by DataCamp

                  DataFramed

                  268 Listeners

                  Practical AI by Practical AI LLC

                  Practical AI

                  212 Listeners

                  AWS Podcast by Amazon Web Services

                  AWS Podcast

                  201 Listeners

                  The Stack Overflow Podcast by The Stack Overflow Podcast

                  The Stack Overflow Podcast

                  62 Listeners

                  The Real Python Podcast by Real Python

                  The Real Python Podcast

                  141 Listeners

                  Latent Space: The AI Engineer Podcast by swyx + Alessio

                  Latent Space: The AI Engineer Podcast

                  96 Listeners