Machine Learning Guide

MLA 019 Cloud, DevOps & Architecture


Listen Later

The deployment of machine learning models for real-world use involves a sequence of cloud services and architectural choices, where machine learning expertise must be complemented by DevOps and architecture skills, often requiring collaboration with professionals. Key concepts discussed include infrastructure as code, cloud container orchestration, and the distinction between DevOps and architecture, as well as practical advice for machine learning engineers wanting to deploy products securely and efficiently.

Links
  • Notes and resources at ocdevel.com/mlg/mla-19
  • Try a walking desk stay healthy & sharp while you learn & code

;## Translating Machine Learning Models to Production

  • After developing and training a machine learning model locally or using cloud tools like AWS SageMaker, it must be deployed to reach end users.
  • A typical deployment stack involves the trained model exposed via a SageMaker endpoint, a backend server (e.g., Python FastAPI on AWS ECS with Fargate), a managed database (such as AWS RDS Postgres), an application load balancer (ALB), and a public-facing frontend (e.g., React app hosted on S3 with CloudFront and Route 53).
Infrastructure as Code and Automation Tools
  • Infrastructure as code (IaC) manages deployment and maintenance of cloud resources using tools like Terraform, allowing environments to be version-controlled and reproducible.
  • Terraform is favored for its structured approach and cross-cloud compatibility, while other tools like Cloud Formation (AWS-specific) and Pulumi offer alternative paradigms.
  • Configuration management tools such as Ansible, Chef, and Puppet automate setup and software installation on compute instances but are increasingly replaced by containerization and Dockerfiles.
  • Continuous Integration and Continuous Deployment (CI/CD) pipelines (with tools like AWS CodePipeline or CircleCI) automate builds, testing, and code deployment to infrastructure.
Containers, Orchestration, and Cloud Choices
  • Containers, enabled by Docker, allow developers to encapsulate applications and dependencies, facilitating consistency across environments from local development to production.
  • Deployment options include AWS ECS/Fargate for managed orchestration, Kubernetes for large-scale or multi-cloud scenarios, and simpler services like AWS App Runner and Elastic Beanstalk for small-scale applications.
  • Kubernetes provides robust flexibility and cross-provider support but brings high complexity, making it best suited for organizations with substantial infrastructure needs and experienced staff.
  • Use of cloud services versus open-source alternatives on Kubernetes (e.g., RDS vs. Postgres containers) affects manageability, vendor lock-in, and required expertise.
DevOps and Architecture: Roles and Collaboration
  • DevOps unites development and operations through common processes and tooling to accelerate safe production deployments and improve coordination.
  • Architecture focuses on the holistic design of systems, establishing how different technical components fit together and serve overall business or product goals.
  • There is significant overlap, but architecture plans and outlines systems, while DevOps engineers implement, automate, and monitor deployment and operations.
  • Cross-functional collaboration is essential, as machine learning engineers, DevOps, and architects must communicate requirements, constraints, and changes, especially regarding production-readiness and security.
Security, Scale, and When to Seek Help
  • Security is a primary concern when moving to production, especially if handling sensitive data or personally identifiable information (PII); professional DevOps involvement is strongly advised in such cases.
  • Common cloud security pitfalls include publicly accessible networks, insecure S3 buckets, and improper handling of secrets and credentials.
  • For experimentation or small-scale safe projects, machine learning engineers can use tools like Terraform, Docker, and AWS managed services, but should employ cloud cost monitoring to avoid unexpected bills.
Cloud Providers and Service Considerations
  • AWS dominates the cloud market, followed by Azure (strong in enterprise/Microsoft-integrated environments) and Google Cloud Platform (GCP), which offers a strong user interface but has a record of sunsetting products.
  • Managed cloud machine learning services, such as AWS SageMaker and GCP Vertex AI, streamline model training, deployment, and monitoring.
  • Vendor-specific tools simplify management but limit portability, while Kubernetes and its ML pipelines (e.g., Kubeflow, Apache Airflow) provide open-source, cross-cloud options with greater complexity.
Recommended Learning Paths and Community Resources
  • Learning and prototyping with Terraform, Docker, and basic cloud services is encouraged to understand deployment pipelines, but professional security review is critical before handling production-sensitive data.
  • For those entering DevOps, structured learning with platforms like aCloudGuru or AWS’s own curricula can provide certification-ready paths.
  • Continual learning is necessary, as tooling and best practices evolve rapidly.
Reference Links

Expert coworkers at Dept

  • Matt Merrill - Principal Software Developer
  • Jirawat Uttayaya - DevOps Lead
  • The Ship It Podcast (frequent discussions on DevOps and architecture)

DevOps Tools

  • Terraform
  • Ansible

Visual Guides and Comparisons

  • Which AWS container service should I use?
  • A visual guide on troubleshooting Kubernetes deployments
  • Public Cloud Services Comparison
  • Killed by Google

Learning Resources

  • aCloudGuru AWS curriculum
...more
View all episodesView all episodes
Download on the App Store

Machine Learning GuideBy OCDevel

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

759 ratings


More shows like Machine Learning Guide

View all
Data Skeptic by Kyle Polich

Data Skeptic

476 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

590 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

326 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

140 Listeners

DataFramed by DataCamp

DataFramed

267 Listeners

Practical AI by Practical AI LLC

Practical AI

187 Listeners

The Real Python Podcast by Real Python

The Real Python Podcast

138 Listeners

Last Week in AI by Skynet Today

Last Week in AI

281 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

90 Listeners

AI Chat: ChatGPT & AI News, Artificial Intelligence, OpenAI, Machine Learning by Jaeden Schafer

AI Chat: ChatGPT & AI News, Artificial Intelligence, OpenAI, Machine Learning

145 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

196 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

75 Listeners

The Morgan Housel Podcast by Morgan Housel

The Morgan Housel Podcast

984 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

429 Listeners