
Sign up to save your podcasts
Or
Try a walking desk to stay healthy while you study or work!
Full notes at ocdevel.com/mlg/12
TopicsShallow vs. Deep Learning: Shallow learning can often solve problems more efficiently in time and resources compared to deep learning.
Supervised Learning: Key algorithms include linear regression, logistic regression, neural networks, and K Nearest Neighbors (KNN). KNN is unique as it is instance-based and simple, categorizing new data based on proximity to known data points.
Unsupervised Learning:
Decision Trees: Utilized for both classification and regression, decision trees offer a visible, understandable model structure. Variants like Random Forests and Gradient Boosting Trees increase performance and reduce overfitting risks.
4.9
759759 ratings
Try a walking desk to stay healthy while you study or work!
Full notes at ocdevel.com/mlg/12
TopicsShallow vs. Deep Learning: Shallow learning can often solve problems more efficiently in time and resources compared to deep learning.
Supervised Learning: Key algorithms include linear regression, logistic regression, neural networks, and K Nearest Neighbors (KNN). KNN is unique as it is instance-based and simple, categorizing new data based on proximity to known data points.
Unsupervised Learning:
Decision Trees: Utilized for both classification and regression, decision trees offer a visible, understandable model structure. Variants like Random Forests and Gradient Boosting Trees increase performance and reduce overfitting risks.
481 Listeners
590 Listeners
298 Listeners
331 Listeners
141 Listeners
267 Listeners
192 Listeners
139 Listeners
298 Listeners
88 Listeners
142 Listeners
201 Listeners
75 Listeners
988 Listeners
491 Listeners