
Sign up to save your podcasts
Or
Try a walking desk to stay healthy while you study or work!
Full notes at ocdevel.com/mlg/12
TopicsShallow vs. Deep Learning: Shallow learning can often solve problems more efficiently in time and resources compared to deep learning.
Supervised Learning: Key algorithms include linear regression, logistic regression, neural networks, and K Nearest Neighbors (KNN). KNN is unique as it is instance-based and simple, categorizing new data based on proximity to known data points.
Unsupervised Learning:
Decision Trees: Utilized for both classification and regression, decision trees offer a visible, understandable model structure. Variants like Random Forests and Gradient Boosting Trees increase performance and reduce overfitting risks.
4.9
759759 ratings
Try a walking desk to stay healthy while you study or work!
Full notes at ocdevel.com/mlg/12
TopicsShallow vs. Deep Learning: Shallow learning can often solve problems more efficiently in time and resources compared to deep learning.
Supervised Learning: Key algorithms include linear regression, logistic regression, neural networks, and K Nearest Neighbors (KNN). KNN is unique as it is instance-based and simple, categorizing new data based on proximity to known data points.
Unsupervised Learning:
Decision Trees: Utilized for both classification and regression, decision trees offer a visible, understandable model structure. Variants like Random Forests and Gradient Boosting Trees increase performance and reduce overfitting risks.
480 Listeners
590 Listeners
296 Listeners
326 Listeners
140 Listeners
267 Listeners
189 Listeners
139 Listeners
281 Listeners
88 Listeners
145 Listeners
196 Listeners
75 Listeners
985 Listeners
444 Listeners