Machine Learning Guide

MLG 019 Natural Language Processing 2


Listen Later

Try a walking desk to stay healthy while you study or work!

Notes and resources at ocdevel.com/mlg/19

Classical NLP Techniques:

  • Origins and Phases in NLP History: Initially reliant on hardcoded linguistic rules, NLP's evolution significantly pivoted with the introduction of machine learning, particularly shallow learning algorithms, leading eventually to deep learning, which is the current standard.

  • Importance of Classical Methods: Knowing traditional methods is still valuable, providing a historical context and foundation for understanding NLP tasks. Traditional methods can be advantageous with small datasets or limited compute power.

  • Edit Distance and Stemming:

    • Levenshtein Distance: Used for spelling corrections by measuring the minimal edits needed to transform one string into another.
    • Stemming: Simplifying a word to its base form. The Porter Stemmer is a common algorithm used.
  • Language Models:

    • Understand language legitimacy by calculating the joint probability of word sequences.
    • Use n-grams for constructing language models to increase accuracy at the expense of computational power.
  • Naive Bayes for Classification:

    • Ideal for tasks like spam detection, document classification, and sentiment analysis.
    • Relies on a 'bag of words' model, simplifying documents down to word frequency counts and disregarding sequence dependence.
  • Part of Speech Tagging and Named Entity Recognition:

    • Methods: Maximum entropy models, hidden Markov models.
    • Challenges: Feature engineering for parts of speech, complexity in named entity recognition.
  • Generative vs. Discriminative Models:

    • Generative Models: Estimate the joint probability distribution; useful with less data.
    • Discriminative Models: Focus on decision boundaries between classes.
  • Topic Modeling with LDA:

    • Latent Dirichlet Allocation (LDA) helps identify topics within large sets of documents by clustering words into topics, allowing for mixed membership of topics across documents.
  • Search and Similarity Measures:

    • Utilize TF-IDF for transforming documents into vectors reflecting term importance inversely correlated with document frequency in the corpus.
    • Employ cosine similarity for measuring semantic similarity between document vectors.
...more
View all episodesView all episodes
Download on the App Store

Machine Learning GuideBy OCDevel

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

772 ratings


More shows like Machine Learning Guide

View all
The Changelog: Software Development, Open Source by Changelog Media

The Changelog: Software Development, Open Source

289 Listeners

Data Skeptic by Kyle Polich

Data Skeptic

475 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

623 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

582 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

301 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

348 Listeners

Syntax - Tasty Web Development Treats by Wes Bos & Scott Tolinski - Full Stack JavaScript Web Developers

Syntax - Tasty Web Development Treats

988 Listeners

AI Today Podcast by AI & Data Today

AI Today Podcast

158 Listeners

DataFramed by DataCamp

DataFramed

270 Listeners

Practical AI by Practical AI LLC

Practical AI

202 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

200 Listeners

The Real Python Podcast by Real Python

The Real Python Podcast

140 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

98 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

The AI Daily Brief: Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief: Artificial Intelligence News and Analysis

638 Listeners