Machine Learning Guide

MLG 028 Hyperparameters 2


Listen Later

Notes and resources:  ocdevel.com/mlg/28 

Try a walking desk to stay healthy while you study or work!

More hyperparameters for optimizing neural networks. A focus on regularization, optimizers, feature scaling, and hyperparameter search methods.

Hyperparameter Search Techniques
  • Grid Search involves testing all possible permutations of hyperparameters, but is computationally exhaustive and suited for simpler, less time-consuming models.
  • Random Search selects random combinations of hyperparameters, potentially saving time while potentially missing the optimal solution.
  • Bayesian Optimization employs machine learning to continuously update and hone in on efficient hyperparameter combinations, avoiding the exhaustive or random nature of grid and random searches.
Regularization in Neural Networks
  • L1 and L2 Regularization penalize certain parameter configurations to prevent model overfitting; often smoothing overfitted parameters.
  • Dropout randomly deactivates neurons during training to ensure the model doesn’t over-rely on specific neurons, fostering better generalization.
Optimizers
  • Optimizers like Adam, which combines elements of momentum and adaptive learning rates, are explained as vital tools for refining the learning process of neural networks.
  • Adam, being the most sophisticated and commonly used optimizer, improves upon simpler techniques like momentum by incorporating more advanced adaptative features.
Initializers
  • The importance of weight initialization is underscored with methods like uniform random initialization and the more advanced Xavier initialization to prevent neural networks from starting in 'stuck' states.
Feature Scaling
  • Different scaling methods such as standardization and normalization are used to scale feature inputs to small, standardized ranges.
  • Batch Normalization is highlighted, integrating scaling directly into the network to prevent issues like exploding and vanishing gradients through the normalization of layer outputs.
Links
  • Bayesian Optimization
  • Optimizers (SGD): Momentum -> Adagrad -> RMSProp -> Adam -> Nadam
...more
View all episodesView all episodes
Download on the App Store

Machine Learning GuideBy OCDevel

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

753 ratings


More shows like Machine Learning Guide

View all
Data Skeptic by Kyle Polich

Data Skeptic

474 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

585 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

630 Listeners

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) by Sam Charrington

The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)

429 Listeners

AWS Podcast by Amazon Web Services

AWS Podcast

200 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

295 Listeners

Python Bytes by Michael Kennedy and Brian Okken

Python Bytes

212 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

322 Listeners

AI Today Podcast: Artificial Intelligence Insights, Experts, and Opinion by AI & Data Today

AI Today Podcast: Artificial Intelligence Insights, Experts, and Opinion

147 Listeners

DataFramed by DataCamp

DataFramed

267 Listeners

Last Week in AI by Skynet Today

Last Week in AI

275 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

90 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

193 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

64 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

418 Listeners