Machine Learning Guide

MLG 025 Convolutional Neural Networks


Listen Later

Try a walking desk to stay healthy while you study or work!

Notes and resources at  ocdevel.com/mlg/25 

  • Filters and Feature Maps: Filters are small matrices used to detect visual features from an input image by applying them to local pixel patches, creating a 3D output called a feature map. Each filter is tasked with recognizing a specific pattern (e.g., edges, textures) in the input images.

  • Convolutional Layers: The filter is applied across the image to produce an output which is the feature map. A convolutional layer is composed of several feature maps, with depth corresponding to the number of filters applied.

  • Image Compression Techniques:

    • Window and Stride: The window is the size of the pixel patch examined by the filter, and stride determines how much the window moves over the image. Together, they allow compression of images by reducing the number of windows examined, effectively downsampling the image.
    • Padding: Padding allows the filter to account for border pixels that do not fit perfectly within the window size. 'Same' padding adds zero-padding to ensure all pixels are included, while 'valid' padding ignores excess pixels around the borders.
  • Max Pooling: Max pooling is a downsampling technique used to reduce the spatial dimensions of feature maps by taking the maximum value over a defined window, further compressing and reducing computational load.

  • Predefined Architectures: There are well-established predefined architectures like LeNet, AlexNet, and ResNet, which have been fine-tuned through competitions such as the ImageNet Challenge, and can be used directly or adapted for specific tasks in computer vision.

...more
View all episodesView all episodes
Download on the App Store

Machine Learning GuideBy OCDevel

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

759 ratings


More shows like Machine Learning Guide

View all
Data Skeptic by Kyle Polich

Data Skeptic

470 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

585 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

324 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

140 Listeners

DataFramed by DataCamp

DataFramed

269 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

The Real Python Podcast by Real Python

The Real Python Podcast

136 Listeners

Last Week in AI by Skynet Today

Last Week in AI

281 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

AI Chat: ChatGPT & AI News, Artificial Intelligence, OpenAI, Machine Learning by Jaeden Schafer

AI Chat: ChatGPT & AI News, Artificial Intelligence, OpenAI, Machine Learning

137 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

190 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

63 Listeners

The Morgan Housel Podcast by Morgan Housel

The Morgan Housel Podcast

1,003 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

424 Listeners