Machine Learning Guide

MLG 029 Reinforcement Learning Intro


Listen Later

Notes and resources:  ocdevel.com/mlg/29 

Try a walking desk to stay healthy while you study or work!

Reinforcement Learning (RL) is a fundamental component of artificial intelligence, different from purely being AI itself. It is considered a key aspect of AI due to its ability to learn through interactions with the environment using a system of rewards and punishments.

Links:

  • openai/baselines
  • reinforceio/tensorforce
  • NervanaSystems/coach
  • rll/rllab
  • Differential Computers
Concepts and Definitions
  • Reinforcement Learning (RL):
    • RL is a framework where an "agent" learns by interacting with its environment and receiving feedback in the form of rewards or punishments.
    • It is part of the broader machine learning category, which includes supervised and unsupervised learning.
    • Unlike supervised learning, where a model learns from labeled data, RL focuses on decision-making and goal achievement.
Comparison with Other Learning Types
  • Supervised Learning:
    • Involves a teacher-student paradigm where models are trained on labeled data.
    • Common in applications like image recognition and language processing.
  • Unsupervised Learning:
    • Not commonly used in practical applications according to the experience shared in the episode.
  • Reinforcement Learning vs. Supervised Learning:
    • RL allows agents to learn independently through interaction, unlike supervised learning where training occurs with labeled data.
Applications of Reinforcement Learning
  • Games and Simulations:
    • Deep reinforcement learning is used in games like Go (AlphaGo) and video games, where the environment and possible rewards or penalties are predefined.
  • Robotics and Autonomous Systems:
    • Examples include robotics (e.g., Boston Dynamics mules) and autonomous vehicles that learn to navigate and make decisions in real-world environments.
  • Finance and Trading:
    • Utilized for modeling trading strategies that aim to optimize financial returns over time, although breakthrough performance in trading isn’t yet evidenced.
RL Frameworks and Environments
  • Framework Examples:
    • OpenAI Baselines, TensorForce, and Intel's Coach, each with different capabilities and company backing for development.
  • Environments:
    • OpenAI's Gym is a suite of environments used for training RL agents.
Future Aspects and Developments
  • Model-based vs. Model-free RL:
    • Model-based RL involves planning and knowledge of the world dynamics, while model-free is about reaction and immediate responses.
  • Remaining Challenges:
    • Current hurdles in AI include reasoning, knowledge representation, and memory, where efforts are ongoing in institutions like Google DeepMind for further advancement.
...more
View all episodesView all episodes
Download on the App Store

Machine Learning GuideBy OCDevel

  • 4.9
  • 4.9
  • 4.9
  • 4.9
  • 4.9

4.9

759 ratings


More shows like Machine Learning Guide

View all
Data Skeptic by Kyle Polich

Data Skeptic

470 Listeners

Talk Python To Me by Michael Kennedy

Talk Python To Me

585 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

296 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

324 Listeners

Data Engineering Podcast by Tobias Macey

Data Engineering Podcast

140 Listeners

DataFramed by DataCamp

DataFramed

269 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

The Real Python Podcast by Real Python

The Real Python Podcast

136 Listeners

Last Week in AI by Skynet Today

Last Week in AI

281 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

AI Chat: ChatGPT & AI News, Artificial Intelligence, OpenAI, Machine Learning by Jaeden Schafer

AI Chat: ChatGPT & AI News, Artificial Intelligence, OpenAI, Machine Learning

137 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

190 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

63 Listeners

The Morgan Housel Podcast by Morgan Housel

The Morgan Housel Podcast

1,003 Listeners

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief (Formerly The AI Breakdown): Artificial Intelligence News and Analysis

424 Listeners