
Sign up to save your podcasts
Or
We talk to Google DeepMind Senior Research Scientist (and incoming Assistant Professor at Harvard), Yilun Du, about his latest paper, "Multiagent Finetuning: Self Improvement with Diverse Reasoning Chains." This paper introduces a multiagent finetuning framework that enhances the performance and diversity of language models by employing a society of agents with distinct roles, improving feedback mechanisms and overall output quality.
The method enables autonomous self-improvement through iterative finetuning, achieving significant performance gains across various reasoning tasks. It's versatile, applicable to both open-source and proprietary LLMs, and can integrate with human-feedback-based methods like RLHF or DPO, paving the way for future advancements in language model development.
Read an overview on the blog, watch the full discussion, or join us live for future paper readings.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
5
1313 ratings
We talk to Google DeepMind Senior Research Scientist (and incoming Assistant Professor at Harvard), Yilun Du, about his latest paper, "Multiagent Finetuning: Self Improvement with Diverse Reasoning Chains." This paper introduces a multiagent finetuning framework that enhances the performance and diversity of language models by employing a society of agents with distinct roles, improving feedback mechanisms and overall output quality.
The method enables autonomous self-improvement through iterative finetuning, achieving significant performance gains across various reasoning tasks. It's versatile, applicable to both open-source and proprietary LLMs, and can integrate with human-feedback-based methods like RLHF or DPO, paving the way for future advancements in language model development.
Read an overview on the blog, watch the full discussion, or join us live for future paper readings.
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
298 Listeners
331 Listeners
217 Listeners
192 Listeners
198 Listeners
298 Listeners
88 Listeners
426 Listeners
121 Listeners
142 Listeners
201 Listeners
75 Listeners
491 Listeners
31 Listeners
43 Listeners