
Sign up to save your podcasts
Or
What are the best practices for organizing data analysis projects in Python? What are the advantages of a more package-centric approach to data science? Christopher Trudeau is back on the show this week, bringing another batch of PyCoder’s Weekly articles and projects.
We discuss Joshua Cook’s recent article “How I Use Python to Organize My Data Analyses.” The article covers how his process for building data analysis projects has evolved and now incorporates modern Python packaging techniques.
Christopher shares his recent video course on grouping real-world data with pandas. The course offers a quick refresher before digging into how to use pandas GroupBy to manipulate, transform, and summarize data.
We also share several other articles and projects from the Python community, including a news roundup, working with JSON data in Python, running an Asyncio event loop in a separate thread, knowing the why behind a system’s code, a retro game engine for Python, and a project for vendorizing packages from PyPI.
This episode is sponsored by Mailtrap.
Course Spotlight: pandas GroupBy: Grouping Real World Data in Python
In this course, you’ll learn how to work adeptly with the pandas GroupBy while mastering ways to manipulate, transform, and summarize data. You’ll work with real-world datasets and chain GroupBy methods together to get data into an output that suits your needs.
Topics:
News:
Show Links:
Discussion:
Projects:
Additional Links:
Level up your Python skills with our expert-led courses:
Support the podcast & join our community of Pythonistas
4.7
136136 ratings
What are the best practices for organizing data analysis projects in Python? What are the advantages of a more package-centric approach to data science? Christopher Trudeau is back on the show this week, bringing another batch of PyCoder’s Weekly articles and projects.
We discuss Joshua Cook’s recent article “How I Use Python to Organize My Data Analyses.” The article covers how his process for building data analysis projects has evolved and now incorporates modern Python packaging techniques.
Christopher shares his recent video course on grouping real-world data with pandas. The course offers a quick refresher before digging into how to use pandas GroupBy to manipulate, transform, and summarize data.
We also share several other articles and projects from the Python community, including a news roundup, working with JSON data in Python, running an Asyncio event loop in a separate thread, knowing the why behind a system’s code, a retro game engine for Python, and a project for vendorizing packages from PyPI.
This episode is sponsored by Mailtrap.
Course Spotlight: pandas GroupBy: Grouping Real World Data in Python
In this course, you’ll learn how to work adeptly with the pandas GroupBy while mastering ways to manipulate, transform, and summarize data. You’ll work with real-world datasets and chain GroupBy methods together to get data into an output that suits your needs.
Topics:
News:
Show Links:
Discussion:
Projects:
Additional Links:
Level up your Python skills with our expert-led courses:
Support the podcast & join our community of Pythonistas
272 Listeners
283 Listeners
481 Listeners
592 Listeners
624 Listeners
443 Listeners
296 Listeners
213 Listeners
142 Listeners
982 Listeners
189 Listeners
266 Listeners
189 Listeners
64 Listeners
77 Listeners