
Sign up to save your podcasts
Or


This paper introduces two scaled-down variants of the Stable Diffusion XL (SDXL) text-to-image model, achieved through progressive removal of layers and losses. These models effectively emulate the original SDXL while reducing parameters and latency, making them more accessible for deployment in resource-constrained environments.
https://arxiv.org/abs//2401.02677
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper introduces two scaled-down variants of the Stable Diffusion XL (SDXL) text-to-image model, achieved through progressive removal of layers and losses. These models effectively emulate the original SDXL while reducing parameters and latency, making them more accessible for deployment in resource-constrained environments.
https://arxiv.org/abs//2401.02677
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

954 Listeners

1,971 Listeners

438 Listeners

112,664 Listeners

10,051 Listeners

5,531 Listeners

214 Listeners

51 Listeners

93 Listeners

473 Listeners