
Sign up to save your podcasts
Or


The paper presents a predictive theory of creativity in convolutional diffusion models, identifying inductive biases that enable novel image generation beyond training data through local patch combinations.
https://arxiv.org/abs//2412.20292
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper presents a predictive theory of creativity in convolutional diffusion models, identifying inductive biases that enable novel image generation beyond training data through local patch combinations.
https://arxiv.org/abs//2412.20292
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

962 Listeners

1,932 Listeners

432 Listeners

112,194 Listeners

9,926 Listeners

5,512 Listeners

212 Listeners

49 Listeners

93 Listeners

464 Listeners