
Sign up to save your podcasts
Or


The paper introduces DICE, a method for aligning large language models using implicit rewards from DPO. DICE outperforms Gemini Pro on AlpacaEval 2 with 8B parameters and no external feedback.
https://arxiv.org/abs//2406.09760
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper introduces DICE, a method for aligning large language models using implicit rewards from DPO. DICE outperforms Gemini Pro on AlpacaEval 2 with 8B parameters and no external feedback.
https://arxiv.org/abs//2406.09760
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

955 Listeners

1,933 Listeners

437 Listeners

112,032 Listeners

9,955 Listeners

5,506 Listeners

212 Listeners

49 Listeners

91 Listeners

472 Listeners