
Sign up to save your podcasts
Or


This paper presents a cost-efficient evaluation framework for large language models, introducing "Cer-Eval" to optimize test sample selection, reducing evaluation points by 20-40% while ensuring reliable performance estimates.
https://arxiv.org/abs//2505.03814
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper presents a cost-efficient evaluation framework for large language models, introducing "Cer-Eval" to optimize test sample selection, reducing evaluation points by 20-40% while ensuring reliable performance estimates.
https://arxiv.org/abs//2505.03814
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

978 Listeners

2,001 Listeners

436 Listeners

113,199 Listeners

10,268 Listeners

5,540 Listeners

218 Listeners

54 Listeners

98 Listeners

460 Listeners