
Sign up to save your podcasts
Or


The paper explores using mechanistic interpretability to enhance gradient descent training in AI, aiming to reduce compute costs and mitigate harmful behaviors through efficient learning curricula.
https://arxiv.org/abs//2501.02362
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper explores using mechanistic interpretability to enhance gradient descent training in AI, aiming to reduce compute costs and mitigate harmful behaviors through efficient learning curricula.
https://arxiv.org/abs//2501.02362
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

962 Listeners

1,932 Listeners

432 Listeners

112,194 Listeners

9,926 Listeners

5,512 Listeners

212 Listeners

49 Listeners

93 Listeners

464 Listeners