
Sign up to save your podcasts
Or


Switch Sparse Autoencoders efficiently scale feature extraction in neural networks by routing activations through smaller expert models, improving reconstruction and sparsity while reducing computational costs.
https://arxiv.org/abs//2410.08201
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
Switch Sparse Autoencoders efficiently scale feature extraction in neural networks by routing activations through smaller expert models, improving reconstruction and sparsity while reducing computational costs.
https://arxiv.org/abs//2410.08201
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,930 Listeners

432 Listeners

112,200 Listeners

9,925 Listeners

5,512 Listeners

211 Listeners

49 Listeners

93 Listeners

466 Listeners