
Sign up to save your podcasts
Or


This paper presents Grouped-Tied Attention and Grouped Latent Attention to enhance LLM decoding efficiency, reducing memory transfers and latency while maintaining model quality and improving throughput.
https://arxiv.org/abs//2505.21487
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper presents Grouped-Tied Attention and Grouped Latent Attention to enhance LLM decoding efficiency, reducing memory transfers and latency while maintaining model quality and improving throughput.
https://arxiv.org/abs//2505.21487
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

951 Listeners

1,964 Listeners

439 Listeners

112,586 Listeners

10,043 Listeners

5,531 Listeners

213 Listeners

51 Listeners

93 Listeners

473 Listeners