
Sign up to save your podcasts
Or


This paper investigates Transformers' ability to learn pseudo-random sequences from linear congruential generators, revealing their capacity for in-context prediction and generalization to unseen moduli through algorithmic structures.
https://arxiv.org/abs//2502.10390
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper investigates Transformers' ability to learn pseudo-random sequences from linear congruential generators, revealing their capacity for in-context prediction and generalization to unseen moduli through algorithmic structures.
https://arxiv.org/abs//2502.10390
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

966 Listeners

1,940 Listeners

433 Listeners

112,502 Listeners

9,911 Listeners

5,526 Listeners

221 Listeners

49 Listeners

94 Listeners

472 Listeners