
Sign up to save your podcasts
Or


This paper explores scaling inference compute by increasing sample generation, demonstrating improved problem-solving coverage and performance across tasks, while highlighting challenges in selecting correct solutions from multiple samples.
https://arxiv.org/abs//2407.21787
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper explores scaling inference compute by increasing sample generation, demonstrating improved problem-solving coverage and performance across tasks, while highlighting challenges in selecting correct solutions from multiple samples.
https://arxiv.org/abs//2407.21787
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

956 Listeners

1,935 Listeners

432 Listeners

112,027 Listeners

9,946 Listeners

5,508 Listeners

211 Listeners

49 Listeners

92 Listeners

468 Listeners