
Sign up to save your podcasts
Or


The paper investigates out-of-distribution behavior in autoregressive LLMs through rule extrapolation in formal languages, analyzing various architectures and proposing a normative theory inspired by algorithmic information theory.
https://arxiv.org/abs//2409.13728
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper investigates out-of-distribution behavior in autoregressive LLMs through rule extrapolation in formal languages, analyzing various architectures and proposing a normative theory inspired by algorithmic information theory.
https://arxiv.org/abs//2409.13728
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

958 Listeners

1,932 Listeners

432 Listeners

112,060 Listeners

9,942 Listeners

5,506 Listeners

209 Listeners

49 Listeners

93 Listeners

467 Listeners