
Sign up to save your podcasts
Or


This paper presents a novel method for image inversion and editing using rectified flow models, achieving superior performance in zero-shot tasks compared to existing diffusion model approaches.
https://arxiv.org/abs//2410.10792
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper presents a novel method for image inversion and editing using rectified flow models, achieving superior performance in zero-shot tasks compared to existing diffusion model approaches.
https://arxiv.org/abs//2410.10792
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,930 Listeners

432 Listeners

112,200 Listeners

9,925 Listeners

5,512 Listeners

211 Listeners

49 Listeners

93 Listeners

466 Listeners