
Sign up to save your podcasts
Or


This paper enhances modular addition in machine learning by introducing diverse training data, angular embedding, and a custom loss function, improving performance for cryptographic applications and other modular arithmetic problems.
https://arxiv.org/abs//2410.03569
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This paper enhances modular addition in machine learning by introducing diverse training data, angular embedding, and a custom loss function, improving performance for cryptographic applications and other modular arithmetic problems.
https://arxiv.org/abs//2410.03569
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,930 Listeners

432 Listeners

112,200 Listeners

9,942 Listeners

5,512 Listeners

211 Listeners

49 Listeners

93 Listeners

466 Listeners