
Sign up to save your podcasts
Or


This study explores redundancy in Transformer architectures, revealing that many attention layers can be pruned with minimal performance loss, enhancing efficiency for large language models.
https://arxiv.org/abs//2406.15786
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This study explores redundancy in Transformer architectures, revealing that many attention layers can be pruned with minimal performance loss, enhancing efficiency for large language models.
https://arxiv.org/abs//2406.15786
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,930 Listeners

432 Listeners

112,200 Listeners

9,925 Listeners

5,512 Listeners

211 Listeners

49 Listeners

93 Listeners

466 Listeners