
Sign up to save your podcasts
Or


This episode on Systems explores the challenges of cloud computing within the framework of biomedical research. Phil Bourne, Dean of the UVA School of Data Science, speaks with computational biologist and associate professor Nathan Sheffield about a paper they co-wrote on systemic issues from cloud platforms that do not support FAIRness, including platform lock-in, poor integration across platforms, and duplicated efforts for users and developers. They suggest instead prioritizing microservices and access to modular data in smaller chunks or summarized form. Emphasizing modularity and interoperability would lead to a more powerful Unix-like ecosystem of web services for biomedical analysis and data retrieval. The two discuss how funders, developers, and researchers can support microservices as the next generation of cloud-based bioinformatics.
From Cloud Computing to Microservices: Next Steps in FAIR Data and Analysis
https://pubmed.ncbi.nlm.nih.gov/36075919/
By UVA School of Data Science5
33 ratings
This episode on Systems explores the challenges of cloud computing within the framework of biomedical research. Phil Bourne, Dean of the UVA School of Data Science, speaks with computational biologist and associate professor Nathan Sheffield about a paper they co-wrote on systemic issues from cloud platforms that do not support FAIRness, including platform lock-in, poor integration across platforms, and duplicated efforts for users and developers. They suggest instead prioritizing microservices and access to modular data in smaller chunks or summarized form. Emphasizing modularity and interoperability would lead to a more powerful Unix-like ecosystem of web services for biomedical analysis and data retrieval. The two discuss how funders, developers, and researchers can support microservices as the next generation of cloud-based bioinformatics.
From Cloud Computing to Microservices: Next Steps in FAIR Data and Analysis
https://pubmed.ncbi.nlm.nih.gov/36075919/

91,055 Listeners

32,079 Listeners

171,976 Listeners

112,454 Listeners

6,053 Listeners

5,160 Listeners

29,146 Listeners

16,097 Listeners

26 Listeners

546 Listeners