The Gradient: Perspectives on AI

Ryan Tibshirani: Statistics, Nonparametric Regression, Conformal Prediction


Listen Later

Episode 121

I spoke with Professor Ryan Tibshirani about:

* Differences between the ML and statistics communities in scholarship, terminology, and other areas.

* Trend filtering

* Why you can’t just use garbage prediction functions when doing conformal prediction

Ryan is a Professor in the Department of Statistics at UC Berkeley. He is also a Principal Investigator in the Delphi group. From 2011-2022, he was a faculty member in Statistics and Machine Learning at Carnegie Mellon University. From 2007-2011, he did his Ph.D. in Statistics at Stanford University.

Reach me at [email protected] for feedback, ideas, guest suggestions.

The Gradient Podcast on: Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (01:10) Ryan’s background and path into statistics

* (07:00) Cultivating taste as a researcher

* (11:00) Conversations within the statistics community

* (18:30) Use of terms, disagreements over stability and definitions

* (23:05) Nonparametric Regression

* (23:55) Background on trend filtering

* (33:48) Analysis and synthesis frameworks in problem formulation

* (39:45) Neural networks as a specific take on synthesis

* (40:55) Divided differences, falling factorials, and discrete splines

* (41:55) Motivations and background

* (48:07) Divided differences vs. derivatives, approximation and efficiency

* (51:40) Conformal prediction

* (52:40) Motivations

* (1:10:20) Probabilistic guarantees in conformal prediction, choice of predictors

* (1:14:25) Assumptions: i.i.d. and exchangeability — conformal prediction beyond exchangeability

* (1:25:00) Next directions

* (1:28:12) Epidemic forecasting — COVID-19 impact and trends survey

* (1:29:10) Survey methodology

* (1:38:20) Data defect correlation and its limitations for characterizing datasets

* (1:46:14) Outro

Links:

* Ryan’s homepage

* Works read/mentioned

* Nonparametric Regression

* Adaptive Piecewise Polynomial Estimation via Trend Filtering (2014) 

* Divided Differences, Falling Factorials, and Discrete Splines: Another Look at Trend Filtering and Related Problems (2020)

* Distribution-free Inference

* Distribution-Free Predictive Inference for Regression (2017)

* Conformal Prediction Under Covariate Shift (2019)

* Conformal Prediction Beyond Exchangeability (2023)

* Delphi and COVID-19 research

* Flexible Modeling of Epidemics

* Real-Time Estimation of COVID-19 Infections

* The US COVID-19 Trends and Impact Survey and Big data, big problems: Responding to “Are we there yet?”



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Joe Rogan Experience by Joe Rogan

The Joe Rogan Experience

229,238 Listeners

The a16z Show by Andreessen Horowitz

The a16z Show

1,087 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

333 Listeners

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas by Sean Carroll | Wondery

Sean Carroll's Mindscape: Science, Society, Philosophy, Culture, Arts, and Ideas

4,183 Listeners

Practical AI by Practical AI LLC

Practical AI

211 Listeners

The Journal. by The Wall Street Journal & Spotify Studios

The Journal.

6,093 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,932 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

511 Listeners

Hard Fork by The New York Times

Hard Fork

5,518 Listeners

The Rest Is History by Goalhanger

The Rest Is History

15,263 Listeners

Huberman Lab by Scicomm Media

Huberman Lab

29,248 Listeners

Disintegrator by Roberto Alonso Trillo, Marek Poliks, and Helena McFadzean

Disintegrator

10 Listeners

Practical: AI & Business News by Practical News

Practical: AI & Business News

25 Listeners