The Gradient: Perspectives on AI

Sasha Rush: Building Better NLP Systems


Listen Later

In episode 113 of The Gradient Podcast, Daniel Bashir speaks to Professor Sasha Rush.

Professor Rush is an Associate Professor at Cornell University and a Researcher at HuggingFace. His research aims to develop natural language processing systems that are safe, fast, and controllable. His group is interested primarily in tasks that involve text generation, and they study data-driven probabilistic methods that combine deep-learning based models with probabilistic controls. He is also interested in open-source NLP and deep learning, and develops projects to make deep learning systems safer, clearer, and easier to use.

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach us at [email protected]

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (01:47) Professor Rush’s background

* (03:23) Professor Rush’s reflections on prior work—importance of learning and inference

* (04:58) How much engineering matters in deep learning, the Rush vs. Frankle Bet

* (07:12) On encouraging and incubating good research

* (10:50) Features of good research environments

* (12:36) 5% bets in Professor Rush’s research: State-Space Models (SSMs) as an alternative to Transformers

* (15:58) SSMs vs. Transformers

* (18:53) Probabilistic Context-Free Grammars—are (P)CFGs worth paying attention to?

* (20:53) Sequence-level knowledge distillation: approximating sequence-level distributions

* (25:08) Pruning and knowledge distillation — orthogonality of efficiency techniques

* (26:33) Broader thoughts on efficiency

* (28:31) Works on prompting

* (28:58) Prompting and In-Context Learning

* (30:05) Thoughts on mechanistic interpretability

* (31:25) Multitask prompted training enables zero-shot task generalization

* (33:48) How many data points is a prompt worth?

* (35:13) Directions for controllability in LLMs

* (39:11) Controllability and safety

* (41:23) Open-source work, deep learning libraries

* (42:08) A story about Professor Rush’s post-doc at FAIR

* (43:51) The impact of PyTorch

* (46:08) More thoughts on deep learning libraries

* (48:48) Levels of abstraction, PyTorch as an interface to motivate research

* (50:23) Empiricism and research commitments

* (53:32) Outro

Links:

* Research

* Early work / PhD

* Dual Decomposition and LP Relaxations

* Vine Pruning for Efficient Multi-Pass Dependency Parsing

* Improved Parsing and POS Tagging Using Inter-Sentence Dependency Constraints

* Research — interpretable and controllable natural language generation

* Compound Probabilistic Context-Free Grammars for Grammar Induction

* Multitask prompted training enables zero-shot task generalization

* Research — deep generative models

* A Neural Attention Model for Abstractive Sentence Summarization

* Learning Neural Templates for Text Generation

* How many data points is a prompt worth?

* Research — efficient algorithms and hardware for speech, translation, dialogue

* Sequence-Level Knowledge Distillation

* Open-source work

* NamedTensor

* Torch Struct



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Gray Area with Sean Illing by Vox

The Gray Area with Sean Illing

10,685 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Practical AI by Practical AI LLC

Practical AI

190 Listeners

Thoughts on the Market by Morgan Stanley

Thoughts on the Market

1,261 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

195 Listeners

Last Week in AI by Skynet Today

Last Week in AI

288 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,050 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

88 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

386 Listeners

Hard Fork by The New York Times

Hard Fork

5,422 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

146 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,220 Listeners

Unexplainable by Vox

Unexplainable

2,182 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

76 Listeners

The Ben & Marc Show by Marc Andreessen, Ben Horowitz

The Ben & Marc Show

134 Listeners