
Sign up to save your podcasts
Or


Fine-tuning large language models (LLMs) using solution fine-tuning, solution-cluster re-ranking, and multi-task sequential fine-tuning improves their performance in solving math problems, achieving 58.8% accuracy on the MATH dataset.
https://arxiv.org/abs//2310.10047
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
Fine-tuning large language models (LLMs) using solution fine-tuning, solution-cluster re-ranking, and multi-task sequential fine-tuning improves their performance in solving math problems, achieving 58.8% accuracy on the MATH dataset.
https://arxiv.org/abs//2310.10047
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

953 Listeners

1,971 Listeners

438 Listeners

112,759 Listeners

10,063 Listeners

5,531 Listeners

214 Listeners

51 Listeners

99 Listeners

473 Listeners