
Sign up to save your podcasts
Or


The paper introduces a simple method for obtaining high-quality text embeddings using synthetic data and minimal training steps. The method outperforms existing approaches on text embedding benchmarks without using labeled data, and achieves state-of-the-art results when combined with labeled data.
https://arxiv.org/abs//2401.00368
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper introduces a simple method for obtaining high-quality text embeddings using synthetic data and minimal training steps. The method outperforms existing approaches on text embedding benchmarks without using labeled data, and achieves state-of-the-art results when combined with labeled data.
https://arxiv.org/abs//2401.00368
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

951 Listeners

1,964 Listeners

439 Listeners

112,586 Listeners

10,043 Listeners

5,531 Listeners

214 Listeners

51 Listeners

93 Listeners

473 Listeners