
Sign up to save your podcasts
Or


Gradual magnitude pruning enhances deep reinforcement learning agents' parameter effectiveness, leading to significant performance gains and adherence to a "scaling law" with minimal network parameters.
https://arxiv.org/abs//2402.12479
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
Gradual magnitude pruning enhances deep reinforcement learning agents' parameter effectiveness, leading to significant performance gains and adherence to a "scaling law" with minimal network parameters.
https://arxiv.org/abs//2402.12479
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

950 Listeners

1,942 Listeners

436 Listeners

112,105 Listeners

10,026 Listeners

5,522 Listeners

212 Listeners

51 Listeners

92 Listeners

474 Listeners