
Sign up to save your podcasts
Or


Proposed MoE-tuning strategy for Large Vision-Language Models (LVLMs) creates a sparse model with constant computational cost, addressing performance degradation and reducing hallucinations.
https://arxiv.org/abs//2401.15947
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
Proposed MoE-tuning strategy for Large Vision-Language Models (LVLMs) creates a sparse model with constant computational cost, addressing performance degradation and reducing hallucinations.
https://arxiv.org/abs//2401.15947
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

962 Listeners

1,986 Listeners

436 Listeners

112,842 Listeners

10,104 Listeners

5,539 Listeners

216 Listeners

51 Listeners

99 Listeners

475 Listeners