
Sign up to save your podcasts
Or


The paper explores improving text-to-audio generation by focusing on concepts and temporal ordering, using a preference dataset and diffusion-DPO loss to enhance performance over existing models.
https://arxiv.org/abs//2404.09956
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper explores improving text-to-audio generation by focusing on concepts and temporal ordering, using a preference dataset and diffusion-DPO loss to enhance performance over existing models.
https://arxiv.org/abs//2404.09956
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

956 Listeners

1,942 Listeners

437 Listeners

111,970 Listeners

9,971 Listeners

5,512 Listeners

211 Listeners

49 Listeners

92 Listeners

473 Listeners