The Automation Podcast

Siemens SINAMICS G220 Clean Power Drive (P251)


Listen Later

Shawn Tierney meets up with Ivan Spronk of Siemens to learn about the SINAMICS G220 Clean Power Drive in this episode of The Automation Podcast.
For any links related to this episode, check out the “Show Notes” located below the video.
Watch The Automation Podcast from The Automation Blog:

Listen to The Automation Podcast from The Automation Blog:

The Automation Podcast, Episode 251 Show Notes:
Special thanks to Ivan Spronk of Siemens for coming on the show, and to Siemens for sponsoring this episode so we could release it “ad free!” To learn about the topics discussed in this episode, checkout the below links:
  • White Paper – Drives Harmonics – Siemens US
  • SINAMICS G220 Website
  • SINAMICS G220 Catalog
  • Siemens Product Configurator (SPC) for quick part number selection and access to data sheets and CAD files
  • Siemens energy savings calculator, SinaSave 
    Read the transcript on The Automation Blog: (automatically generated)

    Shawn Tierney (Host): Thank you for tuning back into the automation podcast. My name is Shawn Tierney from Insights and Automation. And this week, I meet up with Iren Sprock from Siemens to learn all about their g two twenty clean power drive. I also wanna thank Siemens for sponsoring this episode so I can bring it to you completely ad free. So with that said, I wanna welcome back to the show Ivan from Siemens to talk about VFDs.

    And, this is something we’ve been wanting to talk about for a while. But before you jump into your presentation, Ivan, could you introduce yourself to our audience for those who maybe didn’t catch your last appearance?

    Ivan Spronk (Siemens): Thanks a lot for just having me, back to the show here. I got a slide up here that introduces myself. I’m the product manager for the Synamix variable frequency drives for Siemens here in The US. So, yeah, happy to be back on your show. And what I would, like to talk to you about and discuss with you is our latest variable frequency drive.

    It’s the g two twenty and specifically the clean power drive. This is a best in class solution for a grid friendly power quality when using variable frequency drives. So Shawn, you audience may be wondering why we should discuss power grids and variable frequency drives, but I’ll just say if you’ve been around variable frequency drives or VFDs as I’ll refer to them, you’ve likely had conversations or heard something about VFDs creating or generating harmonics on the power grid.

    Shawn Tierney (Host): Oh, yeah. Yeah.

    Ivan Spronk (Siemens): Yeah. Or maybe you’ve, you know, someone in the audience has been involved in a situation where harmonic current and associated voltage distortion on your plants electrical grid were causing overheating on transformers and cabling or potentially causing circuit breakers to trip their fuses to open. Or maybe you’re just an engineer looking to select and specify a variable frequency drive and you may need to answer some questions about harmonics that typical VFDs generate. You can relate to any of those or if you’re just interested to know more about this topic, we’ll invite you to stay tuned here for the next thirty five to forty minutes for discussion on power quality and VFDs. So, Shawn, I’d like to just ask you, have you heard anything about the power grid lately?

    Shawn Tierney (Host): Well, yes. I’ve heard lots about the power grid. I know that this is more and more becoming a big issue because when you have a lot of VFDs producing all kinds of harmonics, that can cause lots of problems like the ones you just mentioned. But, also, the utilities are starting to to see this and saying, why are we putting up with this? So aside from the power grid needing to be hardened against all kinds of things, everything from EMTs to, you know, just, you know, Yahoo’s shooting transformers in the middle of nowhere.

    This has been a, I think, a big and growing issue. That’s why I’m glad that you’re on the talk about this because in the preshow, we just really I really got a sense of how important this was, you know, in 2025 and going into 2026.

    Ivan Spronk (Siemens): Lots of conversations about the grid and really how the grid electrical grid is being stretched. And with all of the, you know, data centers being built, you know, lots of conversations about how power is gonna be supplied with those. In other words, I think for maybe the first time in twenty five to thirty years, they’re anticipating our usage and power requirements going up. So that’s why I think all these utilities and plant operators are interested in the grid. So some reasons to discuss then the power grid and variable frequency drives is variable frequency drives very useful for motor control, but left unchecked, they can introduce several power quality issues.

    Harmonics, as you can see on the screen here, typical VFDs use rectifiers that generate nonlinear currents that also distort the voltage waveform and these harmonics can propagate through the electrical grid. And, you know, with that voltage waveform potentially affecting other equipment or you know at worst case other utility customers. These voltage fluctuations can lead to flicker in lighting and perhaps even take other sensitive devices offline. Typical VFDs some of them can negatively impact power factor. Again, something that’s of interest to utilities and plant operators.

    And just you know there could be some resonant frequencies set up that may interfere with other things. So those are all things that yeah, harmonics, and you know, the voltage fluctuation, things that are unfavorable I’ll say. And what I’d like to do here Shawn is just gonna introduce, you know, what I want to tell you is we have a very unique product here in the SINAMICS g two twenty clean power drive. Three advantages of this product we’ll wanna talk about here through through the course of this podcast. One is the clean power technology.

    So you can see total harmonic current distortion is well under the strictest harmonic standards there at less than 2%. It delivers near unity power factor under almost any load conditions. And I’ll just say, you know, there has been technologies out there that have been able to produce, you know, those two attributes of of, you know, low current harmonic distortion and near unity power factor. But what’s most unique about, this product we’re that we’re launching here is the compact space saving design, and it is the smallest low harmonics drive in the market. And also available, it’s all self contained, so there’s nothing extra to install.

    It’s all in one footprint. And I’ll give you an example here. This product is released up to a through 150 horsepower now. By the end of the year we’ll have it released up through 200 horsepower. So this is a relatively new product on the market.

    But that 200 horsepower drive imagine this Shawn less than three feet tall, less than 12 inches wide, and about 14 inches deep. That’s a 200 horsepower drive, that will guarantee these, things I’ve got got here with low distortion and near unity power factor.

    Shawn Tierney (Host): You know, that’s not something I would have thought of is that these clean drives are more clean power drives are typically larger than their standard cousins. And so the fact that you’ve been able to get these smaller and closer to the sizes of the standard drive is pretty impressive.

    Ivan Spronk (Siemens): You’re quite we we’d like to think so. Let’s dig into, you know, first of all, if, you know, I I said variable frequency drives or typical very free frequency drives can generate harmonics. So why why would people wanna use VFDs? Turns out variable frequency drives are really good at two things. One, saving energy, and two, improving processes.

    So just, you know, kind of as a reminder, why do people wanna use variable frequency drives? Just a reminder. Yeah. Half the world’s electricity is used by motors operating pumps and fans and compressors. And just as a reminder, Shawn, if you’ve got a 20 horsepower motor operating and I just use twelve hours a day, two sixty five days a year, I used average commercial power rate of 12¢ a kilowatt hour, that electric motor is gonna cost you running across the line around $5,500.

    If I operate that motor with a VFD and I’ve got opportunity to adjust the speed, you know, based on demand, electricity cost is half of it. So $2,500 And that even gets more grows your savings grow if I consider a 100 horsepower motor operating twelve hours a day, two fifty days a year, again, with that same kilowatt hour. You know, that running that electric motor across the line is gonna cost you, you know, I’ve got on the screen here $28,000. I’ve got the opportunity to adjust speed and control speed as I do with the VFD, and the application can, of course, doesn’t have to be run at full speed. You know, just typical savings again is gonna it’s gonna cost you less than half to run that electric motor.

    So I like to put those numbers in front of people, Shawn, because I think people lose sight of how much it costs to run an electric motor. So any thoughts on that?

    Shawn Tierney (Host): Yeah. You know, when I first got in this industry back in ’90, this was big. This was talked about all the time. They were like, if you get a fan or pump and you don’t have a VFD on it, you’re just wasting money. And and and to some extent too soft status.

    But the point being that, you know, if the way you drove your car was you just put the pedal to the metal everywhere you went, you could just realize that’s not gonna be very efficient, you know, fuel wise. And so, you know, putting aside the process thing, because many processes, you can’t just do a cross line starter. Right? It would be great for the process, but, typically, fans and and pumps, I mean, the the amount of savings is tremendous. And I know for a very long time, this was, you know, it was up there with, lighting, up upgrading your lighting in your plant.

    You’re just installing VFDs or upgrading VFDs from very old VFDs. A lot of times, the cost savings and the rebates would make the the project pay for itself within a year or two, if not sooner. So it’s, for anybody listening, I know all the old timers out there are like, yeah, know all about this, but maybe he’s listening and you haven’t taken a look at that, definitely call your, local representative and ask him about energy savings with VFDs because it’s huge. I mean, it’s just massive. As you show in this slide, you know, but it’s it’s it’s just it’s it’s super.

    Now at your second point, processes, yeah, some processes I mean, they wouldn’t be possible if all you had was across the line. You know, we we think about, you know, needing a very precise control, very precise movement, maybe not servo control, but in some cases, you know, just, you know, starting the VFD across the line would, you know, would break things. Right? You need to coast up and coast down, and, you know, be able to vary the speed based on the but what part of the what product you’re making sometimes. But let me turn it back to you.

    Ivan Spronk (Siemens): Sure. So one of the links that I’ve got in my resources is a a a link to it’s called CNA Save. It’s just our Siemens name for our, energy savings calculator. So somebody, you know, with that link, somebody could go in there and very quickly, you know, put in their own horsepower and speed profiles and energy costs and see for themselves, you know, more dialed in. So yeah.

    And I liked your your conversation about the process. I mean, so I think what I’m trying to establish on this slide really is VFDs are very useful and very effective at helping manage costs and improve process. So, you know, VFDs are not going away. So now let’s then dive into figuring out, okay, how do we handle harmonics that typical drives generate. So first, Shawn, let’s start with a conversation about what are line harmonics, and I’ve just got a few slides here to talk about that.

    But we’ll relate it to, you know, what we call linear loads, which is like an induction motor or resistors or incandescent lamps. They draw sinusoidal or linear current proportional to voltage. So in other words, for the audience on the looking at this slide here you can see very nice looking sine waves. Yeah. In this country of course that’s coming from our power plants at 60 Hertz.

    Looks very nice, right? Well, when you put a nonlinear load on your electrical distribution center system, yeah, and nonlinear loads are any power electronic device that’s converting AC power to DC power. So that’s what we’re doing in a VFD, we’re converting AC power to DC power. But also computers, you know, that’s obviously not the same talking in the same magnitude of power, but this is what computers are doing. Same thing with LED lamps now, Discharge lighting.

    And very interestingly enough, this is also what’s going on in EV charging stations. You know, you’re converting AC power to DC power, so that’s considered a nonlinear load. And what happens there in a nonlinear load is it doesn’t draw, it just draws power in pulses when the capacitors need to charge. So think about these capacitors charging more at the top of the waveform, And that’s then what causes these variations in both voltage and current, from the fundamental sine wave. And you know, in very simple terms, that’s what these harmonics are.

    Yeah. They’re non sinusoidal, they’re nonlinear, and even since it’s changing with the applied voltage. So there’s some things that they, you know, negative impacts we’ll say. And again, for the audience that’s looking at the slide there, you can kind of see some of these nonlinear currents stacked up there. Point is it creates a much more complex waveform, and there’s current flowing at those multiple frequencies.

    So Shawn, I’ve got for for people that are maybe having a hard time visualing this up, I’ve got a little example. So can you think, Shawn, of a musical group that sings in parts?

    Shawn Tierney (Host): Mhmm.

    Ivan Spronk (Siemens): Even if we can’t mention them on the air, you can we can all think of, you know, a group that’s in Yep. Yep. Yeah. Exactly. So here we go.

    We’ve got a musical group singing in different parts, and these different musical parts are sung at different pitches or frequencies. And that all blends together to make a richer sound. Right? Well, we can think of that fuller sound that’s flowing at those frequencies. That’s kinda like more current flowing in there.

    So, you know, to back to our harmonics example. So, yeah, there’s world flowing at these other frequencies other than 60 Hertz, and that kind of fundamentally becomes a problem we need to deal with. And then in that in that group, Shawn, can you think of someone what does it sound like when they sing off key?

    Shawn Tierney (Host): Absolutely. Who doesn’t sound good.

    Ivan Spronk (Siemens): Does it so maybe we’ll think of that as voltage distortion. So we gotta gotta do something about that too. So

    Shawn Tierney (Host): Yeah. I’d like to you know what? For me, you know, to and I think the charts for those listening, I think the charts really spell it out. They’re color coded, and they show the different harmonics. And for me, I think charting it is kinda one of the ways to understand it visually because if you think about let’s say you have a large rock, a medium rock, and a small rock, and you throw all three at the same time into a pond.

    You can visually see the big ripple, the medium ripple, and the small ripple, but it’s really hard for you to understand as they’re spreading out what the effect would be on, you know, any any, you know, maybe toy boats that your kids have in the water or grandkids have in the water. Right? And so it it’s it’s a very tough for for human beings to try to keep in their head more than three things happening at a time. Right? And so and so I I love seeing the chart here, and it shows the relationship to when the capacity of charging and how that affects the primary and the sympathetic and the different waveforms.

    And I just know that these are, you know, inducing currents, And each one of these are inducing currents, but it’s like that throwing multiple rocks into into a body of water. I just can’t I, you know, I need to see it. I need to draw it out. I just can’t, you know, understand. Hey.

    Well, that me means this little boat’s gonna go to the Northwest because, you know, you know, and this is where I think it’s it’s easy to overlook the effects that these harmonics have because it is it does get kinda complicated to visualize.

    Ivan Spronk (Siemens): Yeah. No. I I like that analogy of, the rocks and the water too. You can see those wave forms and yeah. It becomes, you know, more current flow that has to be dealt with.

    And and the voltage notching is something again, talking about typical VFDs. I’ve got a little picture here of yeah, showing in the center of the screen there. Just main section of a typical VFD with the rectifier front end that’s a six pulse, standard six pulse rectifier in there that’s what you know is very very common. You can see the DC link capacitors in the middle there, and of course the inverter section on the output which is recreating that sine wave. But let’s turn our attention to you know the input waveform that we’re showing.

    You can see you know drawing power creating those that notched waveform. And really what I want to point out on this slide is okay that’s kind of at the top of the slide I’ve got a picture of OneDrive doing that that you know on any given distribution system there’s a variety of loads right? Each with its own signature that interacts with each other, So you end up in trying to show down in this down in the orange section here of this drawing. Okay all of these different loads combined with their own signature to create kind of a system signature if you will. And then what happens is, okay, you’ve got standards that we’ll talk about here a little bit, but standards and specifications, you know, you’ll see if you’re an engineer dealing with harmonics, you know, they often refer to this point of common coupling.

    So that’s kind of what I’m trying to come across on this slide here as well is when you have a system, you know, it’s very useful to identify this point of common coupling where you’re gonna measure, these harmonics. So you’ll see that in a lot of specifications. Not sure if you ever seen that, Shawn.

    Shawn Tierney (Host): No. And and and just the point of common coupling, when you’re saying that you’re referring to go ahead. Give me that again. What what does that actually mean?

    Ivan Spronk (Siemens): If you notice over on the right side here, we’ve got a different loads. I’m showing I’m showing a couple of different drives. I’m showing few motors operating across the line, each with their own signature, but that ends up creating, you know, on the distribution system, you know, a system signature. So we need some place, you know, to decide, you know, if you’re trying to meet a spec, well, tell me then where I have to measure it. So that becomes that’s what this point of common coupling is.

    And I just wanted to get that term out there because people have often heard of this. Sometimes it’s right at the we’ll say the you know connection to the Utility Transformer. If you’re a plant operator maybe you’ve got a handful of buildings over here and you want to define a point of common coupling between some of these other buildings. Mhmm. But it’s just a, yeah, place to define for a measurement.

    Shawn Tierney (Host): So in this case they have let’s say they have a transformer here. This transformer feeds two, let’s say, VFDs and then two motor starters. So they’re exactly at that point, you know, on the outfeed of the transformer, which we know we have four loads on, to be that point of common coupling. Because what’s gonna happen is we have all these different loads, so we have all these different waveforms. We have the different harmonics from the VFDs.

    So that’s gonna average together to give us a a waveform that’s the combination of those four devices, And that’s point of common coupling. Alright, I’m with you. Thank you.

    Ivan Spronk (Siemens): Exactly. Again, just one other factor, just to talk about a factor that impacts the magnitude of harmonics, is something else you’ll see in a lot of specifications is what’s called the relative short circuit ratio. And really this is just a metric that’s used when evaluating the grid’s ability to support variable frequency drives and and really any other nonlinear load, which, you know, we mentioned LED lighting and there’s other nonlinear loads out there too. But what it does is compares the strength of the grid or distribution system maybe that you have in your plant to the size of the connected load. And of course, this ratio and therefore the magnitude of the harmonics is impacted by transformer size, by what you all got connected if I’ve got other reactors, how much cable I’ve got connected.

    And then probably most importantly by load size and type. In other words, by load size I mean, okay is this 50 horsepower or 200 horsepower? And by type meaning, is this 300 horsepower running across the line or is it on a with a VFD? I like to give an example there, Shawn. Water treatment facilities often you hear a lot about harmonics in those facilities because often there’s such big motor loads being controlled by VFDs and that is by far the largest represents the largest percentage of load on that transformer.

    Right? So I’ve got to imagine kind of this remote water treatment facility, you know, what’s out there? Probably four to five to six depending on how big it is, you know, huge motors running pumps, right? And not much else. So there’s an example of people that would be you know very concerned about how much you know what percentage of nonlinear load do I have on my transformer?

    So that’s kind of all relates back to this short circuit ratio. Again, something you see in a lot of specs. So just trying to give some definition around what that is. Sure if you got anything, any questions or anything you wanted to add or?

    Shawn Tierney (Host): No. I I appreciate that. Appreciate you going over.

    Ivan Spronk (Siemens): No. Kind of a point I’m trying to make is, you know, there’s multiple factors that impact the magnitude and lots of things to think about and figure out. It’s like, wow. If you’re a plant engineer with responsibilities for a power grid, wouldn’t it be great not to have to think about this? And I guess ask you to remember, you know, why I showed you at the beginning of this is, well, our our product, you know, take that whatever’s I drive is giving you no distortion at the terminals, no, you know, near unity power factor.

    So it becomes something that can really simplify. Yeah. Make make make a life of a plant engineer much simpler by specifying products that are you know low harmonic content. So let’s talk just okay so we kind of defined variable frequency drives. We we like them.

    They do a lot of good things. But okay there’s some things going on with harmonics. Okay so what’s what’s necessarily bad about these harmonics? So I’ve got a couple slides here showing that’ll walk us through the effects of, you know, kind of the pain points of harmonics. So, you know, with regards to transformers, generally, remember we talked about there’s there’s more current flowing at these other frequencies.

    So that’s gonna induce some additional heating and additional losses, likely to see some insulation stress, possibly even some resonant frequencies that are gonna set up core vibrations. So those are some of the, you know, undesirable things with generators. You know, there’s most good sized facilities have a standby generator. Right? Well, now if I’m operating a lot of nonlinear loads, I’d really start to need need to start to pay attention to, okay, is my generator gonna work to power these nonlinear loads?

    So something to consider there. And what what ends up happening is you people may have to oversize that generator

    Shawn Tierney (Host): Mhmm.

    Ivan Spronk (Siemens): To be able to run these nonlinear loads. And dropping down to cables and conductors again, if I’ve got more current flowing through them, that’s gonna increase your cable losses due to increased cable resistance caused by the skin effect, which is something that in tendency of alternating currents to flow primarily along the surface of the conductor. Yeah. Increasing or decreasing its ability to, you know, do its job and really deteriorating the the insulation, due to excessive heating. So those are all, you know, negative things that happen when you have a lot of harmonics.

    Right? Alright. Looking at one more slide of just some, you know, negative impact on circuit breakers or that may trip prematurely or fuses that may open prematurely. Again, thermomagnetic circuit breakers have these bimetallic strips that may be impacted by those additional currents flowing. Electronic type circuit breakers use current sensors which need to account for, you know, these harmonic currents.

    Yeah. Most circuit breakers are designed to trip at a zero crossover point. So with these distorted currents, you know, there may be some spurious zero crossovers. And then kind of some similar problems with fuses again due to heating effect. This RMS current and non uniform current distribution through the fuse element.

    You know, what tends to happen is people may have to oversize fuses. But of course, I’m also, you know, to match that actual RMS curve that’s flowing with these harmonics. But okay, that’s not necessarily unless somebody’s out there measuring it, they don’t know what that is. Right, Shawn? And I’ve got codes to meet.

    I can’t just put a way bigger fuse in. So, you know, it kind of becomes this balancing act. Right? Yep. So Yeah.

    So those are all things, you know, that happen when you have a lot of harmonics. Again, I can kind of summarize them on one slide here. Line, you know, line harmonics produced by these nonlinear loads cause overheating, inefficient operation, you know, and more losses, perhaps some premature line tripping, perhaps some system oscillations and instability, perhaps noise, and and yeah. And reduced power factor. So none of those are good.

    Right? In general, reduced efficiency, increased power loss and energy costs, and of course then higher carbon emissions as well. And yet to kind of summarize this all up, current distortion is is bad, infects your all your systems. You gotta account for it. Voltage distortion is often the one that will get people that it’s much worse because that goes all other systems as well if if left unchecked.

    So that’s my kind of my summary slide there of effects of harmonics and why we wanna do things to control them. So any any thoughts or questions there, Shawn?

    Shawn Tierney (Host): No. I think I think the slide does a good job of showing that, you know, this isn’t not just for your VFD, VSD. It’s the other things on the line too that you’re affecting. Right? So so now I’m sure some of the, some of those, listening or watching have have stories of where, you know, one drive, two drive wasn’t a problem, four, five, six drives, and they started seeing these issues because it was cumulative.

    Right? You know, the more drives you have. So, I’d love to hear any stories you guys that are listening and watching have about this and what you did to resolve it. But, this is this is I mean, in some cases, you may just need to get a VFD, like this clean power drive that eliminates this problem versus, you know, other ways of dealing with it.

    Ivan Spronk (Siemens): Sure. Oh, so, yeah, that that leads well into my next kind of couple of slides here. I mean, harmonics are not new. Line harmonics voltage distortion isn’t something that’s new. I mean, this this has been around for as long as VFBs has been around.

    So people have come up with, you know, ways to mitigate this. And I’ve got, you know, five of those methods listed on the screen. And we’re just gonna kinda very quickly step through these. But the last one there is really we’re gonna get to okay. What is in the g two twenty that makes it unique, and why do I wanna talk about it?

    So again, what and we’ll come back to this summary slide at the end here, but just okay. Like I said, people have come up with a handful of different ways to try and mitigate harmonics. First one is just, you know, a simple line reactor. And what you also see is some manufacturers, and Siemens has done this too, to some of our lines. We have DC chokes in the, you know, in that DC link section.

    You know, it’s an inductor and really all that’s doing is imposing, you know, opposing rather the rate of change of current flowing through it. So it kinda takes the top off of those notches if you you will. Yeah. It’s simple, probably economical. It’s usually applied to each VFD.

    If you know something about what impedance you need, there’s there’s a selection you know available in these AC line reactors. You can select the impedance you want. But some of the negative things is they take up more panel space. They gotta wire it. And in reality, it only offers kind of a small improvement.

    So people invented other things. So the next thing I got here is people came up with, they call them massive harmonic filters. They’re also called line harmonic filters, you know, LHF, you see that or harmonic trap filters. And what these do is they eliminate or control kind of those dominant lower order harmonics. I didn’t talk about this much, but these harmonic currents that are flowing they’re they’re much more dominant kind of at the lower end of the frequency range so they these harmonic trap filters work on, you know, those low order harmonics.

    And they they can be effective for, you know, putting in front of a drive. Kind of what they consist of is a LC circuit there, maybe with a damping resistor, and they get tuned to these specific frequencies. So but again, it’s a device that takes up panel space. I have to install that separate from the drive, so I gotta wire it. And then they don’t do a very good job because they still have, you know, voltage notching and instability on gen generator operation is a a is a known problem with these things.

    And okay you’re introducing more losses to the system. So that’s passive harmonic filters. The next thing I’ve got here is, you may have this has been pretty common in the industry. It’s called the 18 pulse front end. And really what this does is uses takes your incoming three phase power and really converts it to nine phases with a, you know, special transformer, that creates a phase shift between these different, now nine phases, so I can now I gotta have this 18 pulse, diode bridge and you can kinda see that on the on the slide here too.

    So I need, you know, this involves a lot of equipment. I need this auto transformer, I need a different rectifier bridge, you know, a much bigger one really, but it does do a really good job of yeah. So I’m not drawing current in big chunks anymore, I’m drawing current more often. Right? Because I’ve got this, you know, 18 pulse rectifier.

    So it really does a good job of meeting, you know, there’s a standard out there called IEEE five nineteen that’s referenced, that we’ll talk about just a little bit more here in a bit. And these also, work relatively well with the standby generator. Some of the negative things is, okay, you know, soon as I introduce that transformer and more switching, that reduces my system efficiency. And really the big one is this takes a ton of space to not only mount that transformer, but that, 18 pulse rectifier. I got a wire between all of that.

    So it ends up being a pretty substantial product cost in terms of component cost and and floor space cost. So, but you know has been widely used in the industry but a lot of metal, you know copper and iron, being used in that solution. Next IBT bridge and a DC bus much like the front end, front two parts of that AC drive that I showed you. So we’ve got kind of a the front end and a DC bus set in there. And what this really does is monitors the current and then really generates compensation current in opposite phase to offset harmonics.

    So this can be, you know, effective. The waveform looks pretty good. It’s unaffected by impedance changes because it’s managing the switches. But yeah, it tends to be you know more complex, it’s more expensive than passive filters, and again it becomes another device to install. Permissioning can be a bit of a challenge because you gotta get this tuned to obtain optimal performance.

    Although there are some self tuning ones out there that, you know, help take that burden away. But, yeah, you gotta install another piece of equipment that takes up think of it as, you know, two thirds of another VFD setting out there. Right?

    Shawn Tierney (Host): I would think it is also less energy efficient too because so we all know we have noise canceling headphones. They take power to generate a cancel waveform. Right? So we were already losing power because of harmonics, and now we’re generating another waveform to cancel out the harmonics. So it just seems like we’re losing more energy to produce this canceling wave.

    So it I mean, I could if this is the option that works, then you have the space granted, but it seems like it’s less energy efficient than maybe a passive filter. Right? But I don’t know. What do you I mean, two thirds more of the panel space as a as just the VFD alone. That sounds like a lot of equipment.

    Ivan Spronk (Siemens): Give you a a fucking waveform. So I think that’s why people like it. But, yeah, it is definitely something that’s more complex. And and again, I think also there’s that commissioning aspect. And another thing is okay.

    So you get it set up on a given distribution system and it’s doing great. Okay what happens when I add a couple of more drives on this distribution system? It’s gonna change the dynamics and may need to do some recommissioning. So again it’s something that a plant operator would would need to you know pay attention to. So all those methods and and what I’m gonna get to next is something that’s actually in the G220.

    So all these previous method methods you know kind of works to a degree and each kind of has its maybe strong points and and not so strong points. But what I want to talk about now is something that’s called active front end. And this is you know, the g two twenty clean power drive is a version of this active front end. So active front ends. So what do we mean by that?

    Basically, it’s, you know, a sinusoidal input rectifier. And we are controlling the commutation or when we’re conducting energy. So with that we can get, you know, if done right we can have a high dynamic response. So we can respond to, changes for instance, you know, voltage dips in the distribution center excuse me, distribution system. And and because of that, then we we can also kinda get because we’re controlling when we’re conducting current, you know, it’s it’s near you unity power factor.

    So, yeah. These active front ends have been versions of these drives out there as well. What’s unique about the g two twenty is that it’s a two quadrant active front end. So power is flowing only in one direction. So in other words from the supplier line source, you know, through the drive to the motor.

    These are called clean power. So you hear the name clean power infeed that’s because okay the, you know, the infeed or line supply is is clean. This is known as something, out in the industry. They’re called Vienna bridge rectifiers. Vienna bridge rectifiers, something that was invented in the mid nineties.

    And basically, I I just put up a, you know, bigger diagram of kinda what’s going on here. There you can kinda see, okay, it is only two quadrant, but there’s this three level switching process that really reduces all these lower ordered harmonics. So this provides them a stable controllable. The advantage is five voltage DC output, so there’s no voltage reduction going on. Makes it ideal for high power applications like VFDs.

    And again, remember I mentioned earlier in the conversation here, electric vehicle chargers. So this is a technology that’s been popularized by some of the people. Yeah. Making electric vehicle chargers as well. So and really, yeah.

    What we’re doing here is using on smaller sizes MOSFETs or on larger sizes, you know, IGBTs here in the power section. Mhmm. And then using a very, you know, part of the sauce here is the control or of the pulse width modulation to manage power inflow is is really, as short a sentence as I can come up to describe what’s going on here. With this, because we’re only controlling power in one direction, there’s some ability, you know, we we don’t have as many switching losses. Again, because we’re only dealing with two quadrants, it’s a compact size, but it is non regenerative.

    And I I just what I’ll do here is I’ll put up, you know, a four quadrant comparison. So there are active front ends out there that are four quadrant, which has more of a full IGBT, you know, front end to it. The advantage of that is you do get power flow. It is regenerative. You do get power flow in both directions.

    But of course now I have higher losses because I’m switching in both directions and and you know, just a little bit less efficient. So really kind of coming back to what’s in the the g two twenty clean power drive is this two quadrant Vienna Bridge rectifier. Again because we’re only controlling power in one direction there’s some space savings that that come from that. So yeah and I’ll just add a two quadrant so that’s why this is targeted at you know, non regenerative load applications like pumps and fans. Right?

    And compressors. Those are not regen load applications. If you need something, you know, four quadrant that would be, you know, like think of a hoisting application or something like that. Maybe large centrifuges or something like that that has a lot of mass that’s been accelerated up and yet can capture some region on the D cell. But that’s kind of, what’s in the g two twenty clean power drive.

    So, Shawn, I’ll just kinda stop there and the and by the way, the waveform is fantastic. Just dialed that in there. So any thoughts or questions or what’s on your what’s on your mind there?

    Shawn Tierney (Host): Yeah. No. That’s important to know. So, you know, you got the two quadrant version in the Clean Power g two twenty. And the important thing here is you’re gonna get beautiful.

    You’re gonna get beautiful elimination of harmonics. You’re gonna have a beautiful waveform. But when you make this choice, you’re also opting out of, regen, like you said, like a hoist or a large inertia load. There’ll be no regenning, which in some cases, you’d be choosing a different VFD. That’s just a different application.

    Right?

    Ivan Spronk (Siemens): Exactly.

    Shawn Tierney (Host): But I think most VFD applications, at least the ones I’ve seen over the years, do not have any regen. Right? They’re your standard purpose, even your high performance VFDs are not doing regen or anything any any type of regeneration capabilities. So I think for most applications, that’s not gonna be an issue, but it’s important to point out.

    Ivan Spronk (Siemens): What do you think? In the you know, some people we’ve asked questions about, why didn’t you just make it four quadrant? Well, let me ask you, Shawn. What do you think’s less expensive to make? A a two quadrant or four quadrant version?

    Shawn Tierney (Host): I got a feeling the four quadrant may be twice as much. Yeah. Well, at least that part of it. Right? The front end.

    Ivan Spronk (Siemens): And when do you think would, you know, take up more handle space

    Shawn Tierney (Host): at two quadrant or four quadrant? Yeah. Exactly. Exactly. Yeah.

    Ivan Spronk (Siemens): So, I mean, it’s it’s a very targeted, again, targeted at those, applications that are non region load applications, which Yeah. I’ll I’ll submit that’s at least 80% of them, you know, what’s out there. So if so, again, this really just to emphasize, it’s it’s a Vienna bridge rectifier. So, you know, some uniqueness there. But then really, also the software side of it, you know, building the, algorithm to manage that power flow and assure efficient operation is what’s been done in the g two twenty drive.

    And yeah. With regards to nice looking waveforms, it’s a lights out, you know, the best looking waveform out there. And matter of fact, I’ve got one more slide here that shows just, you know, development team took one of our g two twenty products, you know. So this is what’s shown over on the left side here is just your standard our, you know, waveform. You can see kind of the double humped waveform there.

    If you put a passive harmonic filter in front of the g two twenty, you know, waveform starts to look pretty good. But now if you just use a clean power drive, you get a very nice looking waveform. All that worrying about what the effect of harmonics how they’re generated you don’t have to think about that anymore because right at the input terminals of the drive you know, we’re giving you very very low turn harmonic distortion. So and and also that near unity power factor. So that’s really the advantages of the clean power drive.

    Shawn Tierney (Host): Well, and I you know, just for the audio audience, I mean, we’re looking at the standard g two twenty, right, your standard drive. You’re looking at a total harmonic distortion of, let’s say, 33. Well, you put that passive harmonic filter on, that’s standard drive. Now we’re down to around 4%. Right?

    But if you have a lot of those drives, that may not be enough. Right? So with the clean power g two twenty, we’re down to under 2%, 1.9 total harmonic distortion. And you see that I know you guys listening can’t see it, but you can see that in the waveforms. All the viewers who are watching can see the waveforms definitely the improvement as you go through each of these options.

    And, again, you’ll know if you need clean power. Right? I’m fairly sure that, you you know, if you don’t need clean power, you don’t need it. Right? But if you need it Right.

    And and this is something that I think we’ll see more and more because quite honestly, I mean, power fact, we all know how that affects your utility bill and how our company thinks about that. And so we can accept more stringent controls over time as, yes, the systems become more advanced. You know, you’re gonna get dinged if you have really bad power, you know, the quality of the power. If you’re causing problems down, you know, for the rest of the block or for the rest of the, business park, they’re gonna start tracking that. So let me turn it back to you, Evan.

    Ivan Spronk (Siemens): Yep. We’re kind of to the end. I’ve got a couple of slides just to summarize what we’ve talked about here. You know, the the g two twenty is, a new drive for us. It’s our next generation SINAMICS product.

    And really this drive was designed and built on four pillars of digitalization. So in the form of you know, having a digital twin capability to help engineers shorten design and engineering efforts when sizing a drive system, and then tools to optimize operation once it’s up and running. You can see another pillar of secure, meaning security, with regards to cybersecurity and and safety that protects people from machines and protects machines from people as well and other sinister actors. And ease of use, you know, next generation product starting with a clean sheet of paper. Okay.

    Some things were done with regards to selection, configuring, commissioning, training, things like that with making the product as easy to use as possible. And then this fourth pillar of being sustainable, you know optimizing manufacturing resources and materials used, even operational efficiency during the life of the product and then even considering you know the end of the product life cycle. So all of those things designed into the Sinamics G220 and then if we look again specifically at the advantages of the clean power drive, you know that nice clean low low total distortion that complies with the harmonic standards, near unity power factor, and again, in that space saving design. And just to kinda give you an idea, I’ve I’ve been telling you it’s small, and I think I maybe let the cat out of the bag at the beginning of the, presentation as well. Yeah.

    Here’s here’s kind of a table that shows dimensions, and there’s that 200 horsepower drive that I referenced. So, yeah, this this technology, you know, it’s not like buy the drive and buy buy something else to add on to it. It’s all in one package. And, yeah, that that 200 horsepower drive, you know, 31 inches tall, less than 12 inches wide, and about 14 inches deep. That’s a 200 horsepower clean power drive that would yeah.

    You wouldn’t have to think about all this harmonic stuff. And I’m not gonna put up a chart that shows competitor a, b, and c and and our product next to it. But you can take that table and go find go look at other people’s solutions and you’ll see yeah. It’s it’s a very compact device. So that’s kind of the point of that slide there, Shawn.

    And, yeah, really my last slide then just kind of I have drawn heavily from a white paper that my counterpart, Nikun Shah, wrote. So we’ll give you a link to go download that, white paper. That discusses a little bit more. I’ve kinda mentioned on and off, I triple e five nineteen. That is by far the prevalent standard in this country for, yeah, describing what harmonics are, different medication techniques.

    And then, you know, there’s tables in there. It’s like, okay, if you’re being called to meet specification at triple eight five nineteen, you know, here are the harmonic current distortion levels and voltage distortion levels that that you need to meet. So that’s all laid out in that white paper. Yeah. And then we’ll give you a a link to our website, to the g two twenty catalog.

    I have another very useful feature shown that I’ll give you a link to is the seamless product selector where you can go and, you know put in a part you know very quickly pick a part number and then get to some you know CAD models of it. And then I’ve mentioned that energy savings calculator at all. So Shawn that’s kind of what I had for today. I hope that was interesting to you and, more importantly, interesting to your audience.

    Shawn Tierney (Host): Yeah. And I just wanna remind the audience that we had you on to talk about the g two twenty a while back. We also had Jackie on that go through commissioning the one twenty and the two twenty. So if you’re kinda curious, how do you do that in TIA portal? Because I’ve never done that before.

    So Jackie came on, and she walked us through that for both of these two models. We also have received some samples from Siemens. So we will be, trying those out them ourselves here in the in the studio. Don’t know. Don’t have a date on that.

    We’re a little backed up here. But, definitely, they’re right in front of me every day, so I don’t forget about them. So we’ll be doing that as well. And, then we’ll make those available to our in person students who come to the school as well as we’ll add those as lessons to the online course over at the automation school. But so lots of stuff.

    We’ve had a lot of coverage. If you have any questions, check out this white paper. I’m sure we just touched the surface of what’s in there. And, of course, Ivan and all his colleagues at Siemens would love to hear from you. And, Ivan, let me, pass it back to you for the final word.

    Ivan Spronk (Siemens): Yeah. Just thank you so much for having me on, Shawn.

    Shawn Tierney (Host): Well, I hope you enjoyed that episode. I wanna thank Ivan for coming on the show and giving us that very technical presentation, which I totally enjoyed. I hope you guys did too. Also wanna thank Siemens for sponsoring this episode because you guys know I love to really stem completely ad free and available to the entire public. So with that said, I also wanna thank you for tuning back in this week.

    If you think about it, please give me a thumbs up or a like or a five star review. That is the best way for me to find new vendors to come on the show. And with the exception of Thanksgiving week, we should have a show every week up until the last two weeks of the year, and we are already recording shows for next year. So I’m excited about that. If you know any vendors you think we should be on the show, please reach out to them.

    I’m working on a new media guide as well, and so, we’d love to have them on the show this coming year of 2026. So with that said, I just wanna wish you all good health and happiness. And until next time, my friends, peace.

    Until next time, Peace ✌️ 

    If you enjoy this episode please give it a Like, and consider Sharing as this is the best way for us to find new guests to come on the show.

    Shawn M Tierney
    Technology Enthusiast & Content Creator

    Eliminate commercials and gain access to my weekly full length hands-on, news, and Q&A sessions by becoming a member at The Automation Blog or on YouTube. You'll also find all of my affordable PLC, HMI, and SCADA courses at TheAutomationSchool.com.

    (20 views)

    ...more
    View all episodesView all episodes
    Download on the App Store

    The Automation PodcastBy Insights In Automation

    • 5
    • 5
    • 5
    • 5
    • 5

    5

    9 ratings


    More shows like The Automation Podcast

    View all
    The Joe Rogan Experience by Joe Rogan

    The Joe Rogan Experience

    229,070 Listeners

    The Ramsey Show by Ramsey Network

    The Ramsey Show

    39,028 Listeners

    The Ben Shapiro Show by The Daily Wire

    The Ben Shapiro Show

    154,100 Listeners

    The Way I Heard It with Mike Rowe by The Way I Heard It with Mike Rowe

    The Way I Heard It with Mike Rowe

    41,243 Listeners

    The Vergecast by The Verge

    The Vergecast

    3,698 Listeners

    HVAC School - For Techs, By Techs by Bryan Orr

    HVAC School - For Techs, By Techs

    1,005 Listeners

    Talking Industrial Automation by Lisa Richter

    Talking Industrial Automation

    31 Listeners

    Control Amplified: The Process Automation Podcast by ControlGlobal

    Control Amplified: The Process Automation Podcast

    8 Listeners

    Automation World Gets Your Questions Answered by Automation World

    Automation World Gets Your Questions Answered

    5 Listeners

    The Charlie Kirk Show by Charlie Kirk

    The Charlie Kirk Show

    68,523 Listeners

    My First Million by Hubspot Media

    My First Million

    2,632 Listeners

    Morning Wire by The Daily Wire

    Morning Wire

    26,636 Listeners

    The AI Daily Brief: Artificial Intelligence News and Analysis by Nathaniel Whittemore

    The AI Daily Brief: Artificial Intelligence News and Analysis

    589 Listeners

    The Tucker Carlson Show by Tucker Carlson Network

    The Tucker Carlson Show

    16,849 Listeners

    RUN MODE: An Industrial Automation Podcast by Power/mation

    RUN MODE: An Industrial Automation Podcast

    0 Listeners