
Sign up to save your podcasts
Or


This work addresses challenges in reinforcement learning for humanoid dexterous manipulation, introducing techniques for sim-to-real tuning, reward design, and sample efficiency, achieving robust performance without human demonstration.
https://arxiv.org/abs//2502.20396
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This work addresses challenges in reinforcement learning for humanoid dexterous manipulation, introducing techniques for sim-to-real tuning, reward design, and sample efficiency, achieving robust performance without human demonstration.
https://arxiv.org/abs//2502.20396
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

960 Listeners

1,929 Listeners

432 Listeners

112,236 Listeners

9,938 Listeners

5,509 Listeners

216 Listeners

49 Listeners

93 Listeners

465 Listeners