
Sign up to save your podcasts
Or
Deep Papers is a podcast series featuring deep dives on today’s seminal AI papers and research. Each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning. In this paper reading, we explore the paper ‘Skeleton-of-Thought’ (SoT) approach, aimed at reducing large language model latency while enhancing answer quality.
This episode is led by Aparna Dhinakaran ( Chief Product Officer, Arize AI) and Sally-Ann Delucia (ML Solutions Engineer, Arize AI), with two of the paper authors: Xuefei Ning, Postdoctoral Researcher at Tsinghua University and Zinan Lin, Senior Researcher, Microsoft Research.
SoT’s innovative methodology guides LLMs to construct answer skeletons before parallel content elaboration, achieving impressive speed-ups of up to 2.39x across 11 models. Don’t miss the opportunity to delve into this human-inspired optimization strategy and its profound implications for efficient and high-quality language generation.
Full transcript and more here: https://arize.com/blog/skeleton-of-thought-llms-can-do-parallel-decoding-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
5
1313 ratings
Deep Papers is a podcast series featuring deep dives on today’s seminal AI papers and research. Each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning. In this paper reading, we explore the paper ‘Skeleton-of-Thought’ (SoT) approach, aimed at reducing large language model latency while enhancing answer quality.
This episode is led by Aparna Dhinakaran ( Chief Product Officer, Arize AI) and Sally-Ann Delucia (ML Solutions Engineer, Arize AI), with two of the paper authors: Xuefei Ning, Postdoctoral Researcher at Tsinghua University and Zinan Lin, Senior Researcher, Microsoft Research.
SoT’s innovative methodology guides LLMs to construct answer skeletons before parallel content elaboration, achieving impressive speed-ups of up to 2.39x across 11 models. Don’t miss the opportunity to delve into this human-inspired optimization strategy and its profound implications for efficient and high-quality language generation.
Full transcript and more here: https://arize.com/blog/skeleton-of-thought-llms-can-do-parallel-decoding-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
298 Listeners
331 Listeners
217 Listeners
192 Listeners
198 Listeners
298 Listeners
88 Listeners
426 Listeners
121 Listeners
142 Listeners
201 Listeners
75 Listeners
491 Listeners
31 Listeners
43 Listeners