
Sign up to save your podcasts
Or


Deep Papers is a podcast series featuring deep dives on today’s seminal AI papers and research. Each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning. In this paper reading, we explore the paper ‘Skeleton-of-Thought’ (SoT) approach, aimed at reducing large language model latency while enhancing answer quality.
This episode is led by Aparna Dhinakaran ( Chief Product Officer, Arize AI) and Sally-Ann Delucia (ML Solutions Engineer, Arize AI), with two of the paper authors: Xuefei Ning, Postdoctoral Researcher at Tsinghua University and Zinan Lin, Senior Researcher, Microsoft Research.
SoT’s innovative methodology guides LLMs to construct answer skeletons before parallel content elaboration, achieving impressive speed-ups of up to 2.39x across 11 models. Don’t miss the opportunity to delve into this human-inspired optimization strategy and its profound implications for efficient and high-quality language generation.
Full transcript and more here: https://arize.com/blog/skeleton-of-thought-llms-can-do-parallel-decoding-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
By Arize AI5
1313 ratings
Deep Papers is a podcast series featuring deep dives on today’s seminal AI papers and research. Each episode profiles the people and techniques behind cutting-edge breakthroughs in machine learning. In this paper reading, we explore the paper ‘Skeleton-of-Thought’ (SoT) approach, aimed at reducing large language model latency while enhancing answer quality.
This episode is led by Aparna Dhinakaran ( Chief Product Officer, Arize AI) and Sally-Ann Delucia (ML Solutions Engineer, Arize AI), with two of the paper authors: Xuefei Ning, Postdoctoral Researcher at Tsinghua University and Zinan Lin, Senior Researcher, Microsoft Research.
SoT’s innovative methodology guides LLMs to construct answer skeletons before parallel content elaboration, achieving impressive speed-ups of up to 2.39x across 11 models. Don’t miss the opportunity to delve into this human-inspired optimization strategy and its profound implications for efficient and high-quality language generation.
Full transcript and more here: https://arize.com/blog/skeleton-of-thought-llms-can-do-parallel-decoding-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

302 Listeners

339 Listeners

232 Listeners

212 Listeners

195 Listeners

303 Listeners

89 Listeners

489 Listeners

133 Listeners

96 Listeners

150 Listeners

209 Listeners

558 Listeners

33 Listeners

41 Listeners