
Sign up to save your podcasts
Or


Paper explores using neural architecture search (NAS) for structural pruning of pre-trained language models to optimize efficiency and generalization performance, utilizing two-stage weight-sharing NAS for accelerated search.
https://arxiv.org/abs//2405.02267
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
Paper explores using neural architecture search (NAS) for structural pruning of pre-trained language models to optimize efficiency and generalization performance, utilizing two-stage weight-sharing NAS for accelerated search.
https://arxiv.org/abs//2405.02267
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

955 Listeners

1,940 Listeners

437 Listeners

112,049 Listeners

9,973 Listeners

5,511 Listeners

211 Listeners

49 Listeners

91 Listeners

473 Listeners