The Gradient: Perspectives on AI

Ted Underwood: Machine Learning and the Literary Imagination


Listen Later

In episode 71 of The Gradient Podcast, Daniel Bashir speaks to Ted Underwood.

Ted is a professor in the School of Information Sciences with an appointment in the Department of English at the University of Illinois at Urbana Champaign. Trained in English literary history, he turned his research focus to applying machine learning to large digital collections. His work explores literary patterns that become visible across long timelines when we consider many works at once—often, his work involves correcting and enriching digital collections to make them more amenable to interesting literary research.

Have suggestions for future podcast guests (or other feedback)? Let us know here or reach us at [email protected]

Subscribe to The Gradient Podcast:  Apple Podcasts  | Spotify | Pocket Casts | RSSFollow The Gradient on Twitter

Outline:

* (00:00) Intro

* (01:42) Ted’s background / origin story

* (04:35) Context in interpreting statistics, “you need a model,” the need for data about human responses to literature and how that manifested in Ted’s work

* (07:25) The recognition that we can model literary prestige/genre because of ML

* (08:30) Distant reading and the import of statistics over large digital libraries

* (12:00) Literary prestige

* (12:45) How predictable is fiction? Scales of predictability in texts

* (13:55) Degrees of autocorrelation in biography and fiction and the structure of narrative, how LMs might offer more sophisticated analysis

* (15:15) Braided suspense / suspense at different scales of a story

* (17:05) The Literary Uses of High-Dimensional Space: how “big data” came to impact the humanities, skepticism from humanists and responses, what you can do with word count

* (20:50) Why we could use more time to digest statistical ML—how acceleration in AI advances might impact pedagogy

* (22:30) The value in explicit models

* (23:30) Poetic “revolutions” and literary prestige

* (25:53) Distant vs. close reading in poetry—follow-up work for “The Longue Durée”

* (28:20) Sophistication of NLP and approaching the human experience

* (29:20) What about poetry renders it prestigious?

* (32:20) Individualism/liberalism and evolution of poetic taste

* (33:20) Why there is resistance to quantitative approaches to literature

* (34:00) Fiction in other languages

* (37:33) The Life Cycles of Genres

* (38:00) The concept of “genre”

* (41:00) Inflationary/deflationary views on natural kinds and genre

* (44:20) Genre as a social and not a linguistic phenomenon

* (46:10) Will causal models impact the humanities?

* (48:30) (Ir)reducibility of cultural influences on authors

* (50:00) Machine Learning and Human Perspective

* (50:20) Fluent and perspectival categories—Miriam Posner on “the radical, unrealized potential of digital humanities.”

* (52:52) How ML’s vices can become virtues for humanists

* (56:05) Can We Map Culture? and The Historical Significance of Textual Distances

* (56:50) Are cultures and other social phenomena related to one another in a way we can “map”?

* (59:00) Is cultural distance Euclidean?

* (59:45) The KL Divergence’s use for humanists

* (1:03:32) We don’t already understand the broad outlines of literary history

* (1:06:55) Science Fiction Hasn’t Prepared us to Imagine Machine Learning

* (1:08:45) The latent space of language and what intelligence could mean

* (1:09:30) LLMs as models of culture

* (1:10:00) What it is to be a human in “the age of AI” and Ezra Klein’s framing

* (1:12:45) Mapping the Latent Spaces of Culture

* (1:13:10) Ted on Stochastic Parrots

* (1:15:55) The risk of AI enabling hermetically sealed cultures

* (1:17:55) “Postcards from an unmapped latent space,” more on AI systems’ limitations as virtues

* (1:20:40) Obligatory GPT-4 section

* (1:21:00) Using GPT-4 to estimate passage of time in fiction

* (1:23:39) Is deep learning more interpretable than statistical NLP?

* (1:25:17) The “self-reports” of language models: should we trust them?

* (1:26:50) University dependence on tech giants, open-source models

* (1:31:55) Reclaiming Ground for the Humanities

* (1:32:25) What scientists, alone, can contribute to the humanities

* (1:34:45) On the future of the humanities

* (1:35:55) How computing can enable humanists as humanists

* (1:37:05) Human self-understanding as a collaborative project

* (1:39:30) Is anything ineffable? On what AI systems can “grasp”

* (1:43:12) Outro

Links:

* Ted’s blog and Twitter

* Research

* The literary uses of high-dimensional space

* The Longue Durée of literary prestige

* The Historical Significance of Textual Distances

* Machine Learning and Human Perspective

* The life cycles of genres

* Can We Map Culture?

* Cohort Succession Explains Most Change in Literary Culture

* Other Writing

* Reclaiming Ground for the Humanities

* We don’t already understand the broad outlines of literary history

* Science fiction hasn’t prepared us to imagine machine learning.

* How predictable is fiction?

* Mapping the latent spaces of culture

* Using GPT-4 to measure the passage of time in fiction



Get full access to The Gradient at thegradientpub.substack.com/subscribe
...more
View all episodesView all episodes
Download on the App Store

The Gradient: Perspectives on AIBy Daniel Bashir

  • 4.7
  • 4.7
  • 4.7
  • 4.7
  • 4.7

4.7

47 ratings


More shows like The Gradient: Perspectives on AI

View all
The Gray Area with Sean Illing by Vox

The Gray Area with Sean Illing

10,688 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

323 Listeners

Practical AI by Practical AI LLC

Practical AI

189 Listeners

Thoughts on the Market by Morgan Stanley

Thoughts on the Market

1,260 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

196 Listeners

Last Week in AI by Skynet Today

Last Week in AI

287 Listeners

All-In with Chamath, Jason, Sacks & Friedberg by All-In Podcast, LLC

All-In with Chamath, Jason, Sacks & Friedberg

9,048 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

87 Listeners

Dwarkesh Podcast by Dwarkesh Patel

Dwarkesh Podcast

387 Listeners

Hard Fork by The New York Times

Hard Fork

5,420 Listeners

Raising Health by Andreessen Horowitz, a16z Bio + Health

Raising Health

146 Listeners

The Ezra Klein Show by New York Times Opinion

The Ezra Klein Show

15,207 Listeners

Unexplainable by Vox

Unexplainable

2,187 Listeners

Latent Space: The AI Engineer Podcast by swyx + Alessio

Latent Space: The AI Engineer Podcast

75 Listeners

The Ben & Marc Show by Marc Andreessen, Ben Horowitz

The Ben & Marc Show

134 Listeners