
Sign up to save your podcasts
Or
This is the fourth and last episode of mini series "The dark side of AI".
C: Francesco, today we are starting with an infuriating discussion. Are you ready to be angry?
F: No problem at all, as long as those men had a perfectly healthy uterus.
F: Like Eve coming from Adam’s rib. I thought we were past that...
Oh good ...
F: so this is an example of a very specific type of bias in medicine, regarding clinical trials and medical studies, that is not only harmful for the purposes of these studies, but has ripple effects in all of society
Give me one
F: I was reading that women are also subject to chronic pain much more than men: for example migraines, and pain related to endometriosis. But there is extensive evidence now of doctors dismissing women’s pain, as either imaginary, or “inevitable”, like it is a normal state of being and does not need a cure at all.
The failure of the medical community as a whole to recognise this obvious bias up to the 21st century is an example of how insidious the problem of bias is.
There are 3 fundamental types of bias:
Bias is a warping of our understanding of reality. We see reality through the lens of our experience and our culture. The origin of bias can date back to traditions going back centuries, and is so ingrained in our way of thinking, that we don’t even see it anymore.
F: And let me add, when it comes to machine learning, we see reality through the lens of data. Bias is everywhere, and we could spend hours and hours talking about it. It’s complicated.
It’s about to become more complicated.
F: of course, if I know you…
F: You know, there was a happier time when this sentence didn’t fill me with a sense of dread...
F: ImageNet has been a critical asset for computer-vision research. There was an annual international competition to create algorithms that could most accurately label subsets of images.
F: Uh Oh.
F: I bet it did’t work
F: and there it is.
F: The ImageNet labels were applied by thousands of unknown people, most likely in the United States, hired by the team from Stanford, and working through the crowdsourcing service Amazon Mechanical Turk. They earned pennies for each photo they labeled, churning through hundreds of labels an hour. The labels were not verified in any way : if a labeler thought someone looks “shady”, this label is just a result of their prejudice, but has no basis in reality.
F: The labels originally came from another sprawling collection of data called WordNet, a kind of conceptual dictionary for machines built by researchers at Princeton University in the 1980s. But with these inflammatory labels included, the Stanford researchers may not have realized what they were doing.
Tech jobs, in past decades but still today, predominantly go to white males from a narrow social class. Inevitably, they imprint the technology with their worldview. So their algorithms learn that a person of color is a criminal, and a woman with a certain look is a slut.
I’m not saying they do it on purpose, but the lack of diversity in the tech industry translates into a narrower world view, which has real consequences in the quality of AI systems.
F: Diversity in tech teams is often framed as an equality issue (which of course it is), but there are enormous advantages in it: it allows to create that cognitive diversity that will reflect into superior products or services.
Crawford and Paglen argue this:
F: You are using the words “interpretation of images” here, as opposed to “description” or “classification”. Certain images depict something concrete, with an objective reality. Like an apple. But other images… not so much?
ImageNet contain images only corresponding to nouns (not verbs for example). Noun categories such as “apple” are well defined.
F: so when an image is interpreted as Drug Addict, Crazy, Hypocrite, Spinster, Schizophrenic, Mulatto, Red Neck… this is not an objective description of reality, it’s somebody’s worldview coming to the surface.
The bizarre thing about these systems is that they remind of early 20th century criminologists like Lombroso, or phrenologists (including Nazi scientists), and physiognomy in general. This was a discipline founded on the assumption that there is a relationship between an image of a person and the character of that person. If you are a murderer, or a Jew, the shape of your head for instance will tell.
F: In reaction to these ideas, Rene’ Magritte produced that famous painting of the pipe with the tag “This is not a pipe”.
You know that famous photograph of the soldier kissing the nurse at the end of the second world war? The nurse came public about it when she was like 90 years old, and told how this total stranger in the street had grabbed her and kissed her. This is a picture of sexual harassment. And knowing that, it does not seem romantic anymore.
F: not romantic at all indeed
F: When we survey the most widely used training sets, we find that this is the rule rather than the exception.
And the skewness and bias of these algorithms have real effects in society, the more you use AI in the judicial system, in medicine, the job market, in security systems based on facial recognition, the list goes on and on.
Last year Google unveiled BERT (Bidirectional Encoder Representations from Transformers). It’s an AI system that learns to talk: it’s a Natural Language Processing engine to generate written (or spoken) language.
F: we have an episode in which we explain all that
BERT is widely used in industry and academia. For example it can interpret news headlines automatically. Even Google’s search engine use it.
Try googling “CEO”, and you get out a gallery of images of old white men.
F: such a pervasive and flawed AI system can propagate inequality at scale. And it’s super dangerous because it’s subtle. Especially in industry, query results will not be tested and examined for bias. AI is a black box and researchers take results at face value.
There are many cases of algorithm-based discrimination in the job market. Targeting candidates for tech jobs for instance, may be done by algorithms that will not recognise women as potential candidates. Therefore, they will not be exposed to as many job ads as men. Or, automated HR systems will rank them lower (for the same CV) and screen them out.
In the US, algorithms are used to calculate bail. The majority of the prison population in the US is composed of people of colour, as a result of a systemic bias that goes back centuries. An algorithm learns that a person of colour is more likely to commit a crime, is more likely to not be able to afford bail, is more likely to violate parole. Therefore, people of colour will receive harsher punishments for the same crime. This amplifies this inequality at scale.
Question everything, never take predictions of your models at face value. Always question how your training samples have been put together, who put them together, when and in what context. Always remember that your model produces an interpretation of reality, not a faithful depiction.
4.2
7272 ratings
This is the fourth and last episode of mini series "The dark side of AI".
C: Francesco, today we are starting with an infuriating discussion. Are you ready to be angry?
F: No problem at all, as long as those men had a perfectly healthy uterus.
F: Like Eve coming from Adam’s rib. I thought we were past that...
Oh good ...
F: so this is an example of a very specific type of bias in medicine, regarding clinical trials and medical studies, that is not only harmful for the purposes of these studies, but has ripple effects in all of society
Give me one
F: I was reading that women are also subject to chronic pain much more than men: for example migraines, and pain related to endometriosis. But there is extensive evidence now of doctors dismissing women’s pain, as either imaginary, or “inevitable”, like it is a normal state of being and does not need a cure at all.
The failure of the medical community as a whole to recognise this obvious bias up to the 21st century is an example of how insidious the problem of bias is.
There are 3 fundamental types of bias:
Bias is a warping of our understanding of reality. We see reality through the lens of our experience and our culture. The origin of bias can date back to traditions going back centuries, and is so ingrained in our way of thinking, that we don’t even see it anymore.
F: And let me add, when it comes to machine learning, we see reality through the lens of data. Bias is everywhere, and we could spend hours and hours talking about it. It’s complicated.
It’s about to become more complicated.
F: of course, if I know you…
F: You know, there was a happier time when this sentence didn’t fill me with a sense of dread...
F: ImageNet has been a critical asset for computer-vision research. There was an annual international competition to create algorithms that could most accurately label subsets of images.
F: Uh Oh.
F: I bet it did’t work
F: and there it is.
F: The ImageNet labels were applied by thousands of unknown people, most likely in the United States, hired by the team from Stanford, and working through the crowdsourcing service Amazon Mechanical Turk. They earned pennies for each photo they labeled, churning through hundreds of labels an hour. The labels were not verified in any way : if a labeler thought someone looks “shady”, this label is just a result of their prejudice, but has no basis in reality.
F: The labels originally came from another sprawling collection of data called WordNet, a kind of conceptual dictionary for machines built by researchers at Princeton University in the 1980s. But with these inflammatory labels included, the Stanford researchers may not have realized what they were doing.
Tech jobs, in past decades but still today, predominantly go to white males from a narrow social class. Inevitably, they imprint the technology with their worldview. So their algorithms learn that a person of color is a criminal, and a woman with a certain look is a slut.
I’m not saying they do it on purpose, but the lack of diversity in the tech industry translates into a narrower world view, which has real consequences in the quality of AI systems.
F: Diversity in tech teams is often framed as an equality issue (which of course it is), but there are enormous advantages in it: it allows to create that cognitive diversity that will reflect into superior products or services.
Crawford and Paglen argue this:
F: You are using the words “interpretation of images” here, as opposed to “description” or “classification”. Certain images depict something concrete, with an objective reality. Like an apple. But other images… not so much?
ImageNet contain images only corresponding to nouns (not verbs for example). Noun categories such as “apple” are well defined.
F: so when an image is interpreted as Drug Addict, Crazy, Hypocrite, Spinster, Schizophrenic, Mulatto, Red Neck… this is not an objective description of reality, it’s somebody’s worldview coming to the surface.
The bizarre thing about these systems is that they remind of early 20th century criminologists like Lombroso, or phrenologists (including Nazi scientists), and physiognomy in general. This was a discipline founded on the assumption that there is a relationship between an image of a person and the character of that person. If you are a murderer, or a Jew, the shape of your head for instance will tell.
F: In reaction to these ideas, Rene’ Magritte produced that famous painting of the pipe with the tag “This is not a pipe”.
You know that famous photograph of the soldier kissing the nurse at the end of the second world war? The nurse came public about it when she was like 90 years old, and told how this total stranger in the street had grabbed her and kissed her. This is a picture of sexual harassment. And knowing that, it does not seem romantic anymore.
F: not romantic at all indeed
F: When we survey the most widely used training sets, we find that this is the rule rather than the exception.
And the skewness and bias of these algorithms have real effects in society, the more you use AI in the judicial system, in medicine, the job market, in security systems based on facial recognition, the list goes on and on.
Last year Google unveiled BERT (Bidirectional Encoder Representations from Transformers). It’s an AI system that learns to talk: it’s a Natural Language Processing engine to generate written (or spoken) language.
F: we have an episode in which we explain all that
BERT is widely used in industry and academia. For example it can interpret news headlines automatically. Even Google’s search engine use it.
Try googling “CEO”, and you get out a gallery of images of old white men.
F: such a pervasive and flawed AI system can propagate inequality at scale. And it’s super dangerous because it’s subtle. Especially in industry, query results will not be tested and examined for bias. AI is a black box and researchers take results at face value.
There are many cases of algorithm-based discrimination in the job market. Targeting candidates for tech jobs for instance, may be done by algorithms that will not recognise women as potential candidates. Therefore, they will not be exposed to as many job ads as men. Or, automated HR systems will rank them lower (for the same CV) and screen them out.
In the US, algorithms are used to calculate bail. The majority of the prison population in the US is composed of people of colour, as a result of a systemic bias that goes back centuries. An algorithm learns that a person of colour is more likely to commit a crime, is more likely to not be able to afford bail, is more likely to violate parole. Therefore, people of colour will receive harsher punishments for the same crime. This amplifies this inequality at scale.
Question everything, never take predictions of your models at face value. Always question how your training samples have been put together, who put them together, when and in what context. Always remember that your model produces an interpretation of reality, not a faithful depiction.
43,917 Listeners
11,133 Listeners
1,069 Listeners
77,562 Listeners
483 Listeners
592 Listeners
202 Listeners
298 Listeners
260 Listeners
266 Listeners
190 Listeners
2,524 Listeners
35 Listeners
2,979 Listeners
5,422 Listeners