O'Reilly Data Show Podcast

The evolution of data science, data engineering, and AI


Listen Later

This episode of the Data Show marks our 100th episode. This podcast stemmed out of video interviews conducted at O’Reilly’s 2014 Foo Camp. We had a collection of friends who were key members of the data science and big data communities on hand and we decided to record short conversations with them. We originally conceived of using those initial conversations to be the basis of a regular series of video interviews. The logistics of studio interviews proved too complicated, but those Foo Camp conversations got us thinking about starting a podcast, and the Data Show was born.
To mark this milestone, my colleague Paco Nathan, co-chair of Jupytercon, turned the tables on me and asked me questions about previous Data Show episodes. In particular, we examined the evolution of key topics covered in this podcast: data science and machine learning, data engineering and architecture, AI, and the impact of each of these areas on businesses and companies. I’m proud of how this show has reached so many people across the world, and I’m looking forward to sharing more conversations in the future.
Here are some highlights from our conversation:
AI is more than machine learning
I think for many people machine learning is AI. I’m trying to, in the AI Conference series, convince people that a true AI system will involve many components, machine learning being one. Many of the guests I have seem to agree with that.
Evolving infrastructure for big data
In the early days of the podcast, many of the people I interacted with had Hadoop as one of the essential things in their infrastructure. I think while that might still be the case, there are more alternatives these days. I think a lot of people are going to object stores in the cloud. Another examples is that before, people maintained specialized systems. There’s still that, but people are trying to see if they can combine some of these systems, or come up with systems that can do more than one workload. For example, this whole notion in Spark of having a unified system that is able to do batch in streaming caught on during the span of this podcast.
Related resources:
An easy to scan episode list of the Data Show
“What is data science?”
“What are machine learning engineers?”
“What is Artificial Intelligence?”
“Building tools for the AI applications of tomorrow”
“Data engineering: A quick and simple definition”
...more
View all episodesView all episodes
Download on the App Store

O'Reilly Data Show PodcastBy O'Reilly Media

  • 4
  • 4
  • 4
  • 4
  • 4

4

63 ratings


More shows like O'Reilly Data Show Podcast

View all
Data Skeptic by Kyle Polich

Data Skeptic

479 Listeners

Software Engineering Daily by Software Engineering Daily

Software Engineering Daily

623 Listeners

O'Reilly Radar Podcast - O'Reilly Media Podcast by O'Reilly Media

O'Reilly Radar Podcast - O'Reilly Media Podcast

35 Listeners

O'Reilly Design Podcast - O'Reilly Media Podcast by O'Reilly Media

O'Reilly Design Podcast - O'Reilly Media Podcast

8 Listeners

Super Data Science: ML & AI Podcast with Jon Krohn by Jon Krohn

Super Data Science: ML & AI Podcast with Jon Krohn

301 Listeners

NVIDIA AI Podcast by NVIDIA

NVIDIA AI Podcast

334 Listeners

Machine Learning Guide by OCDevel

Machine Learning Guide

773 Listeners

DataFramed by DataCamp

DataFramed

269 Listeners

Practical AI by Practical AI LLC

Practical AI

207 Listeners

AWS Podcast by Amazon Web Services

AWS Podcast

205 Listeners

Google DeepMind: The Podcast by Hannah Fry

Google DeepMind: The Podcast

204 Listeners

Last Week in AI by Skynet Today

Last Week in AI

306 Listeners

Machine Learning Street Talk (MLST) by Machine Learning Street Talk (MLST)

Machine Learning Street Talk (MLST)

96 Listeners

MIT Technology Review Narrated by MIT Technology Review

MIT Technology Review Narrated

261 Listeners

This Day in AI Podcast by Michael Sharkey, Chris Sharkey

This Day in AI Podcast

228 Listeners

The AI Daily Brief: Artificial Intelligence News and Analysis by Nathaniel Whittemore

The AI Daily Brief: Artificial Intelligence News and Analysis

616 Listeners

Practical: AI & Business News by Practical News

Practical: AI & Business News

25 Listeners