
Sign up to save your podcasts
Or


In this paper read, we discuss “Towards Monosemanticity: Decomposing Language Models Into Understandable Components,” a paper from Anthropic that addresses the challenge of understanding the inner workings of neural networks, drawing parallels with the complexity of human brain function. It explores the concept of “features,” (patterns of neuron activations) providing a more interpretable way to dissect neural networks. By decomposing a layer of neurons into thousands of features, this approach uncovers hidden model properties that are not evident when examining individual neurons. These features are demonstrated to be more interpretable and consistent, offering the potential to steer model behavior and improve AI safety.
Find the transcript and more here: https://arize.com/blog/decomposing-language-models-with-dictionary-learning-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
By Arize AI5
1515 ratings
In this paper read, we discuss “Towards Monosemanticity: Decomposing Language Models Into Understandable Components,” a paper from Anthropic that addresses the challenge of understanding the inner workings of neural networks, drawing parallels with the complexity of human brain function. It explores the concept of “features,” (patterns of neuron activations) providing a more interpretable way to dissect neural networks. By decomposing a layer of neurons into thousands of features, this approach uncovers hidden model properties that are not evident when examining individual neurons. These features are demonstrated to be more interpretable and consistent, offering the potential to steer model behavior and improve AI safety.
Find the transcript and more here: https://arize.com/blog/decomposing-language-models-with-dictionary-learning-paper-reading/
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.

32,267 Listeners

107 Listeners

546 Listeners

1,067 Listeners

112,987 Listeners

231 Listeners

85 Listeners

6,123 Listeners

200 Listeners

763 Listeners

10,224 Listeners

99 Listeners

551 Listeners

5,546 Listeners

98 Listeners