
Sign up to save your podcasts
Or


This study analyzes the near-block-diagonal structure of neural network Hessians, identifying static and dynamic forces influencing it, and providing insights into large language models' Hessian characteristics.
https://arxiv.org/abs//2505.02809
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
This study analyzes the near-block-diagonal structure of neural network Hessians, identifying static and dynamic forces influencing it, and providing insights into large language models' Hessian characteristics.
https://arxiv.org/abs//2505.02809
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

963 Listeners

1,933 Listeners

434 Listeners

112,360 Listeners

9,922 Listeners

5,507 Listeners

217 Listeners

49 Listeners

93 Listeners

467 Listeners