
Sign up to save your podcasts
Or
LLMs have typically been restricted to reason in the "language space," where chain-of-thought (CoT) is used to solve complex reasoning problems. But a new paper argues that language space may not always be the best for reasoning. In this paper read, we cover an exciting new technique from a team at Meta called Chain of Continuous Thought—also known as "Coconut." In the paper, "Training Large Language Models to Reason in a Continuous Latent Space" explores the potential of allowing LLMs to reason in an unrestricted latent space instead of being constrained by natural language tokens.
Read a full breakdown of Coconut on our blog
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
5
1313 ratings
LLMs have typically been restricted to reason in the "language space," where chain-of-thought (CoT) is used to solve complex reasoning problems. But a new paper argues that language space may not always be the best for reasoning. In this paper read, we cover an exciting new technique from a team at Meta called Chain of Continuous Thought—also known as "Coconut." In the paper, "Training Large Language Models to Reason in a Continuous Latent Space" explores the potential of allowing LLMs to reason in an unrestricted latent space instead of being constrained by natural language tokens.
Read a full breakdown of Coconut on our blog
Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
1,007 Listeners
587 Listeners
442 Listeners
296 Listeners
321 Listeners
210 Listeners
188 Listeners
90 Listeners
350 Listeners
128 Listeners
196 Listeners
72 Listeners
33 Listeners
22 Listeners
37 Listeners