
Sign up to save your podcasts
Or


The paper explores optimal prompting through a Bayesian perspective, highlighting limitations and advantages of prompt optimization methods, supported by experiments on LSTMs and Transformers.
https://arxiv.org/abs//2505.17010
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers
By Igor Melnyk5
33 ratings
The paper explores optimal prompting through a Bayesian perspective, highlighting limitations and advantages of prompt optimization methods, supported by experiments on LSTMs and Transformers.
https://arxiv.org/abs//2505.17010
YouTube: https://www.youtube.com/@ArxivPapers
TikTok: https://www.tiktok.com/@arxiv_papers
Apple Podcasts: https://podcasts.apple.com/us/podcast/arxiv-papers/id1692476016
Spotify: https://podcasters.spotify.com/pod/show/arxiv-papers

978 Listeners

2,001 Listeners

436 Listeners

113,199 Listeners

10,268 Listeners

5,540 Listeners

218 Listeners

54 Listeners

98 Listeners

460 Listeners